Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 12583 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

2001.

A plane flying horizontally at a height of 1500 m with a velocity of \[200\text{ m}{{\text{s}}^{-1}}\] passes directly overhead on antiaircraft gun. Then the angle with the horizontal at which the gun should be fired from the shell with a muzzle velocity of 400 \[\text{m}{{\text{s}}^{-1}}\]to hit the plane, is

A. \[90{}^\circ \,\]
B.                    \[60{}^\circ \]
C. \[30{}^\circ \]              
D.        \[45{}^\circ \]
Answer» C. \[30{}^\circ \]              
2002.

The equation of a projectile is \[y=\sqrt{3}x-\frac{\text{g}{{\text{x}}^{2}}}{20}\] The angle of projection is given by

A. \[\text{tan}\theta \,\text{=}\frac{1}{\sqrt{3}}\]    
B.        \[\text{tan}\theta \,\text{=}\,\sqrt{3}\]
C.  \[\frac{\pi }{2}\]                
D. zero.
Answer» C.  \[\frac{\pi }{2}\]                
2003.

The range of a projectile is R when the angle of projection is \[40{}^\circ \]. For the same velocity of projection and range, the other possible angle of projection is

A. \[45{}^\circ \]              
B.        \[50{}^\circ \]  
C. \[60{}^\circ \]              
D.        \[40{}^\circ \]
Answer» C. \[60{}^\circ \]              
2004.

A particle of mass m is projected with a velocity u making an angle of \[30{}^\circ \] with the horizontal. The magnitude of\[({{V}_{h}}\times h)\] of the projectile when the particle is at its maximum height h

A. \[\frac{\sqrt{3}}{2}\frac{{{\text{v}}^{\text{2}}}}{\text{g}}\]                
B.        zero
C. \[\frac{{{\text{v}}^{\text{2}}}}{\sqrt{2}\text{g}}\]                   
D.         \[\frac{\sqrt{3}}{16}\frac{{{\text{v}}^{\text{2}}}}{\text{g}}\]
Answer» E.
2005.

A body is projected from the ground with a velocity at an angle of \[30{}^\circ \]. It crosses a wall after 3 sec. How far beyond the wall the stone will strike the ground? [Take \[\text{g =10 m/}{{\text{s}}^{\text{2}}}\]]

A. 50\[\sqrt{2}\]    
B.        70\[\sqrt{2}\]
C. 15\[\sqrt{3}\]    
D.        16\[\sqrt{2}\]
Answer» B.        70\[\sqrt{2}\]
2006.

Let two vectors \[\vec{A}=3\hat{i}+\hat{j}+2\hat{k}\] and\[\vec{B}=2\hat{i}-2\hat{j}+4\hat{k}\]. Consider the unit vector perpendicular to both A and B is

A. \[\frac{\hat{i}-\hat{j}-\hat{k}}{\sqrt{3}}\]           
B.        \[\frac{\hat{i}-\hat{j}-\hat{k}}{2\sqrt{3}}\]
C. \[\frac{-\hat{i}-\hat{j}-\hat{k}}{\sqrt{3}}\]          
D.        \[\frac{\hat{i}-\hat{j}-\hat{k}}{2\sqrt{3}}\]
Answer» B.        \[\frac{\hat{i}-\hat{j}-\hat{k}}{2\sqrt{3}}\]
2007.

The vector having magnitude equal to 3 and perpendicular to the two vectors \[\vec{A}=2\hat{i}+2\hat{j}+\hat{k}\] and \[\vec{B}=2\hat{i}-2\hat{j}+3\hat{k}\] is:

A. \[\pm \,(2\hat{i}-\hat{j}-2\hat{k})~~~\]
B.        \[\pm \,(3\hat{i}+\hat{j}-2\hat{k})\]
C. \[-\,(3\hat{i}+\hat{j}-3\hat{k})~\]
D.        \[(3\hat{i}-\hat{j}-3\hat{k})\]
Answer» B.        \[\pm \,(3\hat{i}+\hat{j}-2\hat{k})\]
2008.

If the vectors \[(\hat{i}+\hat{j}+\hat{k})\] and  \[3\hat{i}\] form two sides of a triangle, the area of the triangle is:

A. \[\sqrt{3}\]                    
B.        \[2\sqrt{3}\]
C. \[\frac{3}{\sqrt{2}}\]   
D.        \[3\sqrt{2}\]
Answer» D.        \[3\sqrt{2}\]
2009.

If \[|\vec{a}|\,=4,\,\,|\vec{b}|\,=2\] and the angle between \[\vec{a}\] and \[\vec{b}\] is \[\pi /6\] then \[{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}\] is equal to

A. 48        
B.        16   
C. 4                     
D.        2
Answer» C. 4                     
2010.

If \[|\vec{A}\times \vec{B}|\,=\sqrt{3}\,\vec{A}\,.\,\vec{B}\,,\] then the value of \[|\vec{A}+\vec{B}|\] is:

A. \[{{\left( {{\text{A}}^{\text{2}}}\text{+}{{\text{B}}^{\text{2}}}\text{+}\frac{\text{AB}}{\sqrt{\text{3}}} \right)}^{1/2}}\]          
B. \[\text{A+B}\]
C. \[{{\left( {{\text{A}}^{\text{2}}}\text{+}{{\text{B}}^{\text{2}}}\text{+}\sqrt{\text{3}}\text{AB} \right)}^{1/2}}\]            
D. \[{{\left( {{\text{A}}^{\text{2}}}\text{+}{{\text{B}}^{\text{2}}}\text{+AB} \right)}^{1/2}}\]
Answer» E.
2011.

If none of the vectors \[\vec{A},\,\,\vec{B}\] and \[\vec{C}\] are zero and if \[\vec{A}\times \vec{B}=0\],\[\vec{B}\times \vec{C}=0\] the value of \[\vec{A}\times \vec{C}\] is:

A. unity                
B.        zero
C. \[{{B}^{2}}\]             
D.        \[AC\text{ }cos\theta \]
Answer» C. \[{{B}^{2}}\]             
2012.

If \[{{V}_{1}}\] is velocity of a body projected from the point A and \[{{V}_{2}}\] is the velocity of a body projected from point B which is vertically below the highest point C. if both the bodies collide, then

A. \[{{\text{V}}_{\text{1}}}\text{=}\frac{\text{1}}{\text{2}}{{\text{V}}_{\text{2}}}\]
B. \[{{\text{V}}_{2}}\text{=}\frac{\text{1}}{\text{2}}{{\text{V}}_{1}}\]
C. \[\,{{\text{V}}_{\text{1}}}\text{=}{{\text{V}}_{\text{2}}}\]                 
D. Two bodies can't collide.
Answer» C. \[\,{{\text{V}}_{\text{1}}}\text{=}{{\text{V}}_{\text{2}}}\]                 
2013.

The coordinates of a particle moving in x-y plane at any instant of time t are \[\text{x = 4}{{\text{t}}^{\text{2}}}\text{; y = 3}{{\text{t}}^{\text{2}}}\]. The speed of the particle at that instant is

A. 10 t 
B.        5 t 
C. 3 t                   
D.        2 t
Answer» B.        5 t 
2014.

A particle moves in the X-Y plane with a constant acceleration \[1.5\text{ }m/{{s}^{2}}\] in the direction making an angle of \[37{}^\circ \] with the X-axis. At \[t=0\] the particle is at the origin and its velocity is 8.0 m/s along the X-axis. Find the position of the particle at \[t=4.0\text{ }s\].

A. (41.6 m, 7.2 m) 
B.        (50.3 m, 8.2 m)
C. (60.2 m, 8.2 m)  
D.        (11.2 m, 8 m)
Answer» B.        (50.3 m, 8.2 m)
2015.

The position of particle is given by \[\vec{r}=2\,{{t}^{2}}\widehat{i}+3\,t\widehat{j}+4\widehat{k},\] where \[t\] is in second and the coefficients have proper units for \[\vec{r}\] to be in meter. The \[\vec{a}\,(t)\] of the particle at \[t=1s\,\] is

A. \[\text{4}\,\text{m }{{\text{s}}^{-2}}\] along y-direction
B. \[\text{3}\,\text{m }{{\text{s}}^{-2}}\] along x-direction
C. \[\text{4 m }{{\text{s}}^{-2}}\] along x-direction
D. \[\text{2 m }{{\text{s}}^{-2}}\] along z-direction
Answer» D. \[\text{2 m }{{\text{s}}^{-2}}\] along z-direction
2016.

A particle crossing the origin of co-ordinates at time t = 0, moves in the xy-plane with a constant acceleration a in the y-direction. If its equation of motion is \[\text{y = b}{{\text{x}}^{\text{2}}}\] (b is a constant), its velocity component in the x-direction is

A. \[\sqrt{\frac{2\text{b}}{\text{a}}}\]        
B.        \[\sqrt{\frac{\text{a}}{2\text{b}}}\]
C. \[\sqrt{\frac{\text{a}}{\text{b}}}\]         
D.        \[\sqrt{\frac{\text{b}}{\text{a}}}\] 
Answer» C. \[\sqrt{\frac{\text{a}}{\text{b}}}\]         
2017.

The condition for \[\overrightarrow{A}+\overrightarrow{B}\] to be perpendicular to \[\overrightarrow{A}-\overrightarrow{B}\] is that

A. \[|\overrightarrow{A}|\,\,=\,\,|\overrightarrow{B}|\]        
B.        \[\overrightarrow{\text{A}}\,\,\text{=}\,\,\overrightarrow{\text{B}}\]
C. \[\overrightarrow{\text{B}}\text{ =}\,\,\text{0 }\!\!~\!\!\text{ }\]   
D.        \[\text{ }\!\!|\!\!\text{ }\,\overrightarrow{\text{A}}\,\text{+}\,\overrightarrow{\text{B}}\,\text{ }\!\!|\!\!\text{ }\,\,\text{= }\!\!|\!\!\text{ }\,\overrightarrow{\text{A}}-\overrightarrow{\text{B}}\,\,\text{ }\!\!|\!\!\text{ }\]
Answer» B.        \[\overrightarrow{\text{A}}\,\,\text{=}\,\,\overrightarrow{\text{B}}\]
2018.

If \[A=5\widehat{i}+7\widehat{j}-3\widehat{k}\] and \[B=2\widehat{i}+2\widehat{j}-a\widehat{k}\] are perpendicular vectors, the value of a is:

A. \[-\,2\]  
B.        8   
C. \[-\,7\]              
D.        \[-\,8\]
Answer» E.
2019.

If the sum of two unit vectors is a unit vector, then the magnitude of their difference is

A. 1                     
B.        \[\sqrt{2}\]
C. \[\sqrt{3}\]        
D.        2
Answer» D.        2
2020.

If the magnitudes of vectors A, B and C are 12, 5 and 13 units respectively and A + B = C, the angle between vectors A and B is:

A. 0                     
B.        \[\pi \]   
C. \[\frac{\pi }{2}\]                        
D.        \[\frac{\pi }{4}\] 
Answer» D.        \[\frac{\pi }{4}\] 
2021.

The x and y components of \[\overrightarrow{\text{A}}\] are 4 m and 6 m, respectively. The x and y components of \[(\overrightarrow{A}+\overrightarrow{B}\,)\]are 10 m and 9 m respectively. The magnitude of vector B is:

A. 19 m    
B.        \[\sqrt{27}\]
C. \[\sqrt{45}\]      
D.        \[\sqrt{50}\]
Answer» D.        \[\sqrt{50}\]
2022.

The resultant of vectors \[\overrightarrow{\text{P}}\text{ }\]and \[\overrightarrow{\text{Q}}\] is \[\overrightarrow{\text{R}}\]. On reversing the direction of \[\overrightarrow{\text{Q}}\], the resultant vector becomes \[\overrightarrow{S}\]. Then, correct relation is    

A. \[~{{R}^{2}}+{{S}^{2}}=({{P}^{2}}+{{Q}^{2}})\]        
B. \[{{R}^{2}}+{{S}^{2}}={{P}^{2}}+{{Q}^{2}}\,\]
C. \[{{R}^{2}}+{{P}^{2}}={{S}^{2}}+{{Q}^{2}}\]                     
D. \[{{P}^{2}}+{{S}^{2}}=2\,({{Q}^{2}}+{{R}^{2}})\]
Answer» B. \[{{R}^{2}}+{{S}^{2}}={{P}^{2}}+{{Q}^{2}}\,\]
2023.

If \[\overrightarrow{A}=\overrightarrow{B}-\overrightarrow{C}\], then, the angle between \[\overrightarrow{A}\] and \[\overrightarrow{B}\] is

A. \[\text{ta}{{\text{n}}^{-1}}\frac{{{B}^{2}}+{{A}^{2}}-{{C}^{2}}}{2AB}\]          
B. \[{{\sin }^{-1}}\frac{{{B}^{2}}+{{A}^{2}}-{{C}^{2}}}{2AB}\]
C. \[{{\cos }^{-1}}\frac{{{A}^{2}}+{{B}^{2}}-{{C}^{2}}}{2AB}\]    
D. \[{{\sec }^{-1}}\frac{{{A}^{2}}+{{B}^{2}}-{{C}^{2}}}{2AB}\]
Answer» D. \[{{\sec }^{-1}}\frac{{{A}^{2}}+{{B}^{2}}-{{C}^{2}}}{2AB}\]
2024.

The resultant of two vectors \[\overrightarrow{A}\] and \[\overrightarrow{B}\] is perpendicular to the vector \[\overrightarrow{A}\] and its magnitude is equal to half the magnitude of vector \[\overrightarrow{B}\]. The angle between \[\overrightarrow{A}\] and \[\overrightarrow{B}\] is

A. \[120{}^\circ \]
B.        \[150{}^\circ \]
C. \[135{}^\circ \]
D.        \[180{}^\circ \]
Answer» C. \[135{}^\circ \]
2025.

The vector that must be added to the vector \[\widehat{i}-3\widehat{j}+2\widehat{k}\] and \[3\widehat{i}-6\widehat{j}+7\widehat{k}\] so that the resultant vector is a unit vector along the y-axis, is

A. \[4\widehat{i}-2\widehat{j}+5\widehat{k~}~~\]
B.        \[-\,4\widehat{i}-2\widehat{j}+5\widehat{k~}~~\]
C. \[3\widehat{i}-4\widehat{j}+5\widehat{k~}~~\]
D.        Null vector
Answer» C. \[3\widehat{i}-4\widehat{j}+5\widehat{k~}~~\]
2026.

Vector \[\overrightarrow{A}\] makes equal angle with x, y and z-axis. Value of its components in terms of magnitude of \[\overrightarrow{A}\] will be

A. \[\frac{\overrightarrow{A}}{\sqrt{3}}\]                
B.        \[\frac{\overrightarrow{A}}{\sqrt{2}}\] 
C. \[\sqrt{3}\,\overrightarrow{A}\]   
D.        \[\frac{\sqrt{3}}{\overrightarrow{A}}\]
Answer» B.        \[\frac{\overrightarrow{A}}{\sqrt{2}}\] 
2027.

If the resultant of the vectors \[3\widehat{i}+4\widehat{j}+5\widehat{k}\] and \[5\widehat{i}\text{ }+\text{ }3\widehat{j}\text{ }+\text{ }4\widehat{k}\] makes an angle \[\theta \] with x-axis, then \[cos\text{ }90{}^\circ \] is

A. 0.07     
B.        0.574
C. 0.111   
D.        0.123
Answer» C. 0.111   
2028.

Two identical particles are projected horizontally in opposite directions with a speed of \[5\text{ m}{{\text{s}}^{-1}}\] each from the top of a tall tower as shown. Assuming \[\text{g = 10 m}{{\text{s}}^{-2}}\], the distance between them at the moment when their velocity vectors become mutually perpendicular is

A. 2.5 m               
B. 5 m
C. 10 m                            
D. 20 m
Answer» C. 10 m                            
2029.

If a unit vector is represented by \[0.5\widehat{i}+0.8\widehat{j}+c\widehat{k}\,,\] then the value of c is

A. 1         
B.                    \[\sqrt{0.8}\]
C. \[\sqrt{0.11}\]   
D.        \[\sqrt{0.01}\]
Answer» D.        \[\sqrt{0.01}\]
2030.

The length of a metal is \[{{\ell }_{1}}\] when the tension in it is\[{{T}_{1}}\]and is\[{{\ell }_{2}}\]when the tension is\[{{T}_{2}}\]. The original length of the wire is

A. \[\frac{{{\ell }_{1}}+{{\ell }_{2}}}{2}\]
B. \[\frac{{{\ell }_{1}}{{T}_{2}}+{{\ell }_{2}}{{T}_{1}}}{{{T}_{1}}+{{T}_{2}}}\]
C. (c)\[\frac{{{\ell }_{1}}{{T}_{2}}-{{\ell }_{2}}{{T}_{1}}}{{{T}_{2}}-{{T}_{1}}}\]
D. \[\sqrt{{{T}_{1}}{{T}_{2}}{{\ell }_{1}}{{\ell }_{2}}}\]
Answer» D. \[\sqrt{{{T}_{1}}{{T}_{2}}{{\ell }_{1}}{{\ell }_{2}}}\]
2031.

A circular tube of mean radius 8 cm and thickness 0.04 cm is melted up and recast into a solid rod of the same length. The ratio of the torsional rigidities of the circular tube and the solid rod is

A. \[\frac{{{(8.02)}^{4}}-{{(7.98)}^{4}}}{{{(0.8)}^{4}}}\]
B. \[\frac{{{(8.02)}^{2}}-{{(7.98)}^{2}}}{{{(0.8)}^{2}}}\]
C. \[\frac{{{(0.8)}^{2}}}{{{(8.02)}^{4}}-{{(7.98)}^{4}}}\]
D. \[\frac{{{(0.8)}^{2}}}{{{(8.02)}^{3}}-{{(7.98)}^{2}}}\]
Answer» B. \[\frac{{{(8.02)}^{2}}-{{(7.98)}^{2}}}{{{(0.8)}^{2}}}\]
2032.

A spherical ball contracts in volume by 0.02% when subjected to a pressure of 100 atmosphere. Assuming one atmosphere \[={{10}^{5}}N{{m}^{-2}}\], the bulk modulus of the material of the ball is

A. \[0.02\times {{10}^{5}}N/{{m}^{2}}\]
B. \[0.02\times {{10}^{7}}N/{{m}^{2}}\]
C. \[50\times {{10}^{7}}N/{{m}^{2}}\]
D. \[50\times {{10}^{9}}N/{{m}^{2}}\]
Answer» E.
2033.

Two, spring P and Q of force constants \[{{k}_{p}}\] and \[kQ\left( kQ=\frac{{{k}_{p}}}{2} \right)\] are stretched by applying forces of equal magnitude. If the energy stored in Q is E, then the energy stored in P is

A. E
B. 2E   
C. E/2
D. E/4
Answer» D. E/4
2034.

A 5 metre long wire is fixed to the ceiling. A weight of 10 kg is hung at the lower end and is 1 metre above the floor. The wire was elongated by t mm. The energy stored in the wire due to stretching is

A. Zero
B. 0.05 joule
C. 100 joule
D. 500 joule
Answer» C. 100 joule
2035.

The Young's modulus of the material of a wire is \[2\times {{10}^{10}}N{{m}^{-2}}\]. If the elongation strain is 1 %, then the energy stored in the wire per unit volume in \[J{{m}^{-3}}\] is

A. \[{{10}^{6}}\] 
B. \[{{10}^{8}}\]
C. \[2\times {{10}^{6}}\]
D. \[2\times {{10}^{8}}\]
Answer» B. \[{{10}^{8}}\]
2036.

The bulk modulus of a spherical object is 'B'. If it is subjected to uniform pressure 'p', the fractional decrease in radius is

A. \[\frac{B}{3p}\]
B. \[\frac{3p}{B}\]
C. \[\frac{p}{3p}\]
D. \[\frac{p}{B}\]
Answer» D. \[\frac{p}{B}\]
2037.

Two cylinders A and B of the same material have same length, their radii being in the ratio 1:2 respectively. The two are joined end to end as shown. One end of cylinder A is rigidly clamped while free end of cylinder B is twisted through an angle 9. The angle of twist of cylinder A is           

A. \[\frac{16}{17}\theta \]
B. \[\frac{15}{16}\theta \]
C. \[8\theta \]
D. \[\frac{3}{2}\theta \]
Answer» B. \[\frac{15}{16}\theta \]
2038.

Two Metal strips are riveted together at their ends by four rivets, each of diameter\[a=6\text{ }mm\]. The maximum tension that can be exerted by the riveted strip (if the Shearing stress on the rivet is not to exceed\[6.9\times \text{1}{{\text{0}}^{7}}Pa\]) is?

A. \[6.8\times {{10}^{2}}N\] 
B. \[7.8\times {{10}^{3}}N\]
C. \[8.28\times {{10}^{4}}N\]
D. \[9.1\times {{10}^{3}}N\]
Answer» C. \[8.28\times {{10}^{4}}N\]
2039.

Two parallel and opposite forces, each of magnitude 4000 N are applied tangentially to the upper and lower faces of a cubical metal block 25 cm on a side. The angle of Shear is [shear modulas of metal is 80 G Pa]

A. \[8\times {{10}^{-7}}rad\]
B. \[7\times {{10}^{-7}}rad\]
C. \[6\times {{10}^{-6}}rad\]
D. \[5\times {{10}^{-5}}ra\]
Answer» B. \[7\times {{10}^{-7}}rad\]
2040.

A body of mass 10 kg is attached to a wire of radius 3 cm. Its breaking stress is\[4.8\times {{10}^{7}}N{{m}^{-2}}\], the area of cross-section of the wire is\[{{10}^{-6}}{{m}^{2}}\] . What is the maximum angular velocity with which it can be rotated in the horizontal circle?

A. \[1\,rad{{\sec }^{-1}}\]
B. \[2\,rad{{\sec }^{-1}}\]
C. \[4\,rad{{\sec }^{-1}}\]
D. \[8\,rad{{\sec }^{-1}}\]
Answer» D. \[8\,rad{{\sec }^{-1}}\]
2041.

A solid cube is subjected to a pressure of \[5\times {{10}^{5}}N{{m}^{-2}}\].Each side of the cube is shortened by 1 %. Find x if \[1.67\times {{10}^{x}}N/{{m}^{2}}\] be the bulk modulus of elasticity of the cube.

A. 7                     
B. 11   
C. 12                    
D. 15
Answer» B. 11   
2042.

A metal rod of Young's modulus \[2\times {{10}^{10}}N{{m}^{-2}}\] undergoes an elastic strain of 0.06%. The energy  per unit volume stored in J m-3 is

A. 3600
B. 7200
C. 10800
D. 14400
Answer» B. 7200
2043.

When a force is applied on a wire of uniform cross-section area \[3\times {{10}^{-6}}{{m}^{2}}\] and length 4m, the increase in length is 1 mm. Energy stored in it will be (\[Y=2\times {{10}^{11}}N/{{m}^{2}}\])

A. 6250J
B. 0.177J
C. 0.075 J
D. 0.150J
Answer» D. 0.150J
2044.

The system is rotated with angular speed ox. (see figure). What is the ratio of energy stored in each wire?                

A. 1.29791666666667
B. 50:9  
C. 1.96458333333333
D. 8:9  
Answer» C. 1.96458333333333
2045.

The Poisson's ratio of a material is 0.5. If a force is applied to a wire of this material, there is a decrease in the cross-sectional area by 4%. The percentage increase in the length is:

A. 1% 
B. 2%  
C. 0.025
D. 0.04
Answer» C. 0.025
2046.

If in a wire of Young's modulus Y, longitudinal strain X is produced, then the value of potential energy stored in its unit volume will be

A. \[Y{{X}^{2}}\]
B. \[2Y{{X}^{2}}\]
C. \[{{Y}^{2}}X/2\]
D. \[Y{{X}^{2}}/2\]
Answer» E.
2047.

Consider four steel wires of dimensions given below (d = diameter and / = length): \[l=1m,d=1mm\] \[l=2m,d=2mm\] \[l=2m,d=1mm\] \[l=1m,d=2mm\] If same force is applied to all the wires then the elastic potential energy stored will be maximum in wire:       

A. A
B. B    
C. C
D. D
Answer» D. D
2048.

When a 4 kg mass is hung vertically on a light spring that obeys Hooke's law, the spring stretches by 2cms. The work required to be done by an external agent in stretching this spring by 5cms will be \[(g=9.8\text{ }m/se{{c}^{2}})\]

A. 4.900joule
B. 2.450joule
C. 0.495 joule
D. 0.245 joule
Answer» C. 0.495 joule
2049.

A metal wire of length L is suspended vertically from a rigid support when the body of mass M is attached to the lower end of the wire, the elongation of the wire is\[l\]. The elastic potential energy stored in the wire is

A. \[mgl\]
B. \[mgl/2\]
C. \[mgl/3\]
D. \[mgl/4\]
Answer» C. \[mgl/3\]
2050.

When a pressure of 100 atmosphere is applied on a spherical ball, then its volume reduces to 0.01%. The bulk modulus of the material of the rubber in \[dyne/c{{m}^{2}}\] is

A. \[10\times {{10}^{12}}\]
B. \[100\times {{10}^{12}}\]
C. \[1\times {{10}^{12}}\]
D. \[10\times {{10}^{12}}\]
Answer» D. \[10\times {{10}^{12}}\]