Explore topic-wise MCQs in Network Theory.

This section includes 289 Mcqs, each offering curated multiple-choice questions to sharpen your Network Theory knowledge and support exam preparation. Choose a topic below to get started.

201.

The effective inductance of the circuit across the terminal AB in the figure shown below, is

A. 9 H
B. 21 H
C. 11 H
D. 6 H
Answer» D. 6 H
202.

The energy stored in the magnetic field at a solenoid 30 cm long and 3 cm diameter wound with 1000 turns of wire carrying a current of 10A, is

A. 0.015 joule
B. 0.15 joule
C. 0.5 joule
D. 1.15 joule
Answer» C. 0.5 joule
203.

The time constant of the network shown in the fig. is

A. 4RC
B. 3RC
C. 2RC
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2RC </center></td> </tr><tr><td style="text-align: center;">3</td></tr></table>
Answer» B. 3RC
204.

All the resistances in the fig. are 1 each. The value of I will be

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1 </center></td> <td rowspan="2"> A </td></tr><tr><td style="text-align: center;">15</td></tr></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2 </center></td> <td rowspan="2"> A </td></tr><tr><td style="text-align: center;">15</td></tr></table>
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4 </center></td> <td rowspan="2"> A </td></tr><tr><td style="text-align: center;">15</td></tr></table>
D. A
Answer» E.
205.

The total power consumed in the circuit shown in figure is

A. 6 W`
B. 8 W
C. 9 W
D. 12 W
Answer» C. 9 W
206.

The superposition theorem is valid for

A. All linear networks
B. Linear and symmetrical network
C. Only linear networks having no dependent sources.
D. Linear as well as non-linear networks.
Answer» B. Linear and symmetrical network
207.

Reciprocity theorem is valid for

A. All linear networks
B. All active elements.
C. All linear and passive networks
D. All linear, passive and bilateral networks.
Answer» E.
208.

An ideal voltage source and ideal current source are connected in parallel this circuit has

A. a Norton equivalent but not Thevenin equivalent.
B. a Thevenin equivalent but not Norton equivalent.
C. Both the Thevenin and Norton equivalent.
D. Neither Thevenin nor Norton equivalent.
Answer» C. Both the Thevenin and Norton equivalent.
209.

For the circuit shown in figure, the voltage V

A. 12 V
B. 8 V
C. 4 V
D. 13 V
Answer» E.
210.

The network shown, if i

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"> </td></tr><td align="center">2 </td></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"> </td></tr><td align="center">3</td></table>
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">2 </td></tr><td align="center">3 </td></table>
D. 2
Answer» C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">2 </td></tr><td align="center">3 </td></table>
211.

Which of the following networks in the equivalent of the circuit shown in figure?

A. 1
B. 2
C. 3
D. 4
Answer» B. 2
212.

The current having the waveform shown in figure is flowing in a resistance of 10 . The average power is

A. 1000 watt
B. 1000/2 watt
C. 1000/3 watt
D. 1000/4 watt
Answer» D. 1000/4 watt
213.

The equivalent resistance as seen between the terminals (a, b) is

A. 2
B. 4
C. 1
D. Not possible
Answer» B. 4
214.

Twelve 1H inductors are used as edge to form a cube. The inductance between two diagonally opposite corners of cube is

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5</center></td><td rowspan="2">H</td></tr><td align="center">6 </td></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td><td rowspan="2">H</td></tr><td align="center">6 </td></table>
C. 2 H
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>3</center></td><td rowspan="2">H</td></tr><td align="center">2 </td></table>
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td><td rowspan="2">H</td></tr><td align="center">6 </td></table>
215.

Twelve 1 resistors are used as edge to form a cube. The resistance between two diagonally opposite corners of the cube is

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5</center></td><td rowspan="2"> </td></tr><td align="center">6 </td></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"> </td></tr><td align="center">5 </td></table>
C. 1
D. None of these
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"> </td></tr><td align="center">5 </td></table>
216.

The equivalent capacitance for the network shown in the fig. is

A. C / 4
B. 5C / 13
C. 5C / 2
D. 3C
Answer» C. 5C / 2
217.

The network element and V L characteristics are shown in fig. (a) and (b). The element is

A. Non-linear, active and bilateral
B. Linear, passive and bilateral.
C. Non-linear, passive and non-bilateral
D. Non-linear, active and non-bilateral.
Answer» E.
218.

For the value of obtained in (a), the time taken for 95% of the stored energy to be dissipated is close to

A. 0 10 sec
B. 0 15 sec
C. 0 50 sec
D. 1 0 sec
Answer» C. 0 50 sec
219.

If, at t = 0

A. 0
B. 20
C. 40
D. 60
Answer» B. 20
220.

A series R-L-C circuit is switched on to a step voltage V at t = 0. What are the initial and final values of the current in the circuit, respectively?

A. V/R, V/R
B. Zero, Infinity
C. Zero, Zero
D. Zero, V/R
Answer» D. Zero, V/R
221.

In figure, the capacitor initially has a charge of 10 coulomb. The current in the circuit one second after the switch S is closed will be

A. 14 7 A
B. 18 5 A
C. 40 0 A
D. 50 0 A
Answer» C. 40 0 A
222.

The circuit shown in the figure is in steady state, when the switch is closed at t = 0. Assuming that the inductance is ideal, the current through the inductor at t = 0

A. 0A
B. 0 5 A
C. 1A
D. 2A
Answer» D. 2A
223.

In the figure given, for the initial capacitor voltage is zero. The switch is closed at t = 0. The final steady-state voltage across the capacitor is

A. 10V
B. 5V
C. 20V
D. 0V
Answer» B. 5V
224.

In the circuit shown in figure, the switch S is closed at time t = 0. The voltage across the inductance at t = 0

A. 2V
B. 4V
C. 6 V
D. 8V
Answer» C. 6 V
225.

The initial current in the circuit shown below when the switch is opened for t > 0

A. 1 5 A
B. 0A
C. 2A
D. 10A
Answer» C. 2A
226.

The initial current in the circuit shown below when the switch is opened for t > 0 is

A. 1 67 A
B. 3A
C. 0A
D. 2A
Answer» B. 3A
227.

The circuit shown below is under steady-state condition with the switch closed. The switch is opened at t = 0. What is the time constant of the circuit

A. 0 1s
B. 0 2s
C. 0 4s
D. 10s
Answer» C. 0 4s
228.

For the network shown below, the switch S is closed at t = 0 with the capacitor uncharged. The value of di(t) / dt at t = 0

A. 100 A/sec
B. 100 A/sec
C. 1000 A/sec
D. 1000 A/sec
Answer» C. 1000 A/sec
229.

The time constant of the network shown below is given by

A. (1)
B. (2)
C. (3)
D. (4)
Answer» B. (2)
230.

The steady state current through the 1H inductor in the circuit shown in the given figure is

A. Zero
B. 3A
C. 5A
D. 6A
Answer» C. 5A
231.

For the circuit shown below, the switch is closed at t = 0. The current through the capacitor decreases exponentially with a time constant

A. 0 5s
B. 1s
C. 2s
D. 10s
Answer» B. 1s
232.

For the circuit shown below, C

A. Fixed voltage of 20V
B. Fixed voltage of 10V
C. Fixed voltage of 10V
D. Sinusoidal voltage
Answer» E.
233.

A resistor R of 1 and two inductors L

A. Zero
B. 1A
C. 2A
D. 3A
Answer» B. 1A
234.

In the circuit shown below, S was initially open. At time t = 0, S is closed. When the current through the induc-tor is 6A, the rate of change of current through the resistor is 6 A/s. The value of inductor would be

A. 1H
B. 2H
C. 3H
D. 4H
Answer» C. 3H
235.

In the circuit shown below, steady state was reached when the switch s was open. The switch was closed at t = 0. The initial value of the current through the capacitor 2C is:

A. 0 A
B. 1 A
C. 2 A
D. 3 A
Answer» D. 3 A
236.

Which of the following theorems can be applied to any network-linear or non-linear, active or passive, time variant or time-invariant?

A. Thevenin theorem
B. Norton theorem
C. Tellegen theorem
D. Superposition theorem
Answer» D. Superposition theorem
237.

A parallel circuit has two branches. In one branch, R and L are in series and in the other branch, R and C are in series. The circuit will exhibit unity power factor when

A. <table><tr><td rowspan="2">R =</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>L</center></td><td rowspan="2"></td></tr><td align="center">C</td></table>
B.
C. R = LC
D. <table><tr><td rowspan="2">R =</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>C</center></td><td rowspan="2"></td></tr><td align="center">L</td></table>
E. <table><tr><td rowspan="2">R =</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>L</center></td><td rowspan="2"></td></tr><td align="center">C</td></table>
Answer» B.
238.

R and C are connected in parallel across a sinusoidal voltage source of 240 V. If the currents through the source and the capacitor are 5A and 4A, respectively; what is the value of R?

A. 24
B. 48
C. 80
D. 240
Answer» D. 240
239.

An RLC series circuit has a resistance R of 20 and a current which lags behind the applied voltage by 45 . If the voltage across the inductor is twice the voltage across the capacitor, what is the value of inductive reactance?

A. 10
B. 20
C. 40
D. 60
Answer» D. 60
240.

For a network of 11 branches and 6 nodes, what is the number of independent loops?

A. 4
B. 5
C. 6
D. 11
Answer» D. 11
241.

Consider the following properties of a particular network theorem:

A. Thevenin s theorem
B. Norton s theorem
C. Tellegen s theorem
D. Superposition theorem
Answer» D. Superposition theorem
242.

If two identical 3 A, 4 Norton equivalent circuits are connected in parallel with like polarity, the combined Norton equivalent circuit will be

A. 3 A, 8
B. 6 A, 8
C. 0 A, 2
D. 6 A, 2
Answer» E.
243.

Consider the following statements: Superposition theorem is applicable to a linear network in determining

A. 1 and 2
B. 1, 2 and 3
C. 1 and 3
D. 2 and 3
Answer» B. 1, 2 and 3
244.

Two two-part networks are connected in parallel. The combination is to be represented as a single two-port network. The parameters of this network are obtained by addition of the individual

A. z-parameters
B. parameters
C. y-parameters
D. ABCD parameters
Answer» D. ABCD parameters
245.

Which one of the following statements is correct? In a four-branch parallel circuit, 50 mA current flows in each branch. If one of the branches opens, the currents in the other branches

A. Increase
B. Decrease
C. Are unaffected
D. Double
Answer» D. Double
246.

What is the locus of the tip of the voltage phasor across R in a series R-L-C circuit?

A. A parabola
B. An ellipse
C. A circle
D. A rectangular hyperbola
Answer» D. A rectangular hyperbola
247.

Norton theorems results in

A. A voltage source with an impedance in series
B. A current source with an impedance in parallel
C. A current source with an impedance in series
D. A voltage source with an impedance in parallel
Answer» C. A current source with an impedance in series
248.

In the circuit shown below, the switch is closed at t = 0. The current through the capacitor will decrease exponentially with a time constant

A. 0.5 s
B. 1 s
C. 2 s
D. 10 s
Answer» C. 2 s
249.

In the given circuit, if |I

A. <table><tr><td rowspan="2">I<sub>1</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2">, I<sub>2</sub> will lag by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">6</td><td style="text-align: center;">6</td></tr></table>
B. <table><tr><td rowspan="2">I<sub>1</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2">, I<sub>2</sub> will lag by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">8</td><td style="text-align: center;">8</td></tr></table>
C. <table><tr><td rowspan="2">I<sub>1</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2">, I<sub>2</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">6</td><td style="text-align: center;">6</td></tr></table>
D. <table><tr><td rowspan="2">I<sub>1</sub> will lag by tan<sup> 1</sup> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2">, I<sub>2</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">8</td><td style="text-align: center;">8</td></tr></table>
Answer» D. <table><tr><td rowspan="2">I<sub>1</sub> will lag by tan<sup> 1</sup> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2">, I<sub>2</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">8</td><td style="text-align: center;">8</td></tr></table>
250.

The number of edges in a compete graph of n vertices is

A. n (n 1)
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>n (n 1)</center></td></tr><td align="center">2</td></table>
C. n
D. n 1
Answer» C. n