MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 701. |
A unit vector perpendicular to the plane determined by the points \[P\,(1,\,\,-1,\,\,2),\,\,Q\,(2,\,\,0,\,-1)\] and \[R\,(0,\,\,2,\,\,1)\] is [IIT 1994] |
| A. | \[\frac{2\mathbf{i}-\mathbf{j}+\mathbf{k}}{\sqrt{6}}\] |
| B. | \[\frac{2\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{6}}\] |
| C. | \[\frac{-2\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{6}}\] |
| D. | \[\frac{2\mathbf{i}+\mathbf{j}-\mathbf{k}}{\sqrt{6}}\] |
| Answer» C. \[\frac{-2\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{6}}\] | |
| 702. |
If \[(\vec{a}\times \vec{b})\times \vec{c}=\vec{a}\times (\vec{b}\times \vec{c})\] where \[\vec{a},\vec{b}\] and \[\vec{c}\] are any three vectors such that \[\vec{a}.\vec{b}\ne 0,\vec{b}.\vec{c}\ne 0\] then \[\vec{a}\] and \[\vec{c}\] are |
| A. | Inclined at an angle of \[\frac{\pi }{3}\] between them |
| B. | Inclined at an angle of \[\frac{\pi }{6}\] between them |
| C. | Perpendicular |
| D. | Parallel |
| Answer» E. | |
| 703. |
Consider the parallelepiped with side \[\vec{a}=3\hat{i}+2\hat{j}+\hat{k},\text{ }\vec{b}=\hat{i}+\hat{j}+2\hat{k}\] and \[\vec{c}=\hat{i}+3\hat{j}+3\hat{k}\] then the angle between \[\vec{a}\]and the plane containing the face determined by \[\vec{b}\] and \[\vec{c}\] is |
| A. | \[\sin {{\,}^{-1}}\frac{1}{3}\] |
| B. | \[\cos {{\,}^{-1}}\frac{1}{14}\] |
| C. | \[sin{{\,}^{-1}}\frac{9}{14}\] |
| D. | \[sin{{\,}^{-1}}\frac{2}{3}\] |
| Answer» D. \[sin{{\,}^{-1}}\frac{2}{3}\] | |
| 704. |
If \[\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=4\hat{i}+3\hat{j}+4\hat{k}\] and\[\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}\] are coplanar and \[\left| {\vec{c}} \right|=\sqrt{3}\], then |
| A. | \[\alpha =\sqrt{2},\beta =1\] |
| B. | \[\alpha =1,\beta =\pm 1\] |
| C. | \[\alpha =\pm 1,\beta =1\] |
| D. | \[\alpha =\pm 1,\beta =-1\] |
| Answer» D. \[\alpha =\pm 1,\beta =-1\] | |
| 705. |
Consider the following statements. I. If (a, 1), (b, 2) and (c, 1) are in \[A\times B\] and \[n(A)=3,\,\,n(B)=2\] then \[A=\{a,b,c\}\] and \[B=\{1,2\}\] II. If \[A=\{1,2\}\] and \[B=\{3,4\},\] then \[A\times (B\cap \phi )\]is equal to \[A\times B.\] Choose the correct option. |
| A. | Only I is true |
| B. | Only II is true |
| C. | Both are true |
| D. | Neither I nor II is true |
| Answer» B. Only II is true | |
| 706. |
Given the line \[L:\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}\] and the plane\[\pi :x-2y=z\]. of the following assertions, the only one that is always true is |
| A. | L is \[\bot \] to \[\pi \] |
| B. | L lies in \[\pi \] |
| C. | L is paralel to \[\pi \] |
| D. | None of these |
| Answer» C. L is paralel to \[\pi \] | |
| 707. |
A line makes the same angle \[\alpha \] with each of the x and y axes. If the angle\[\theta \], which it makes with the z-axis, is such that\[si{{n}^{2}}\theta =2\,{{\sin }^{2}}\alpha \], then what is the value of\[\alpha \]? |
| A. | \[\pi /4\] |
| B. | \[\pi /6\] |
| C. | \[\pi /3\] |
| D. | \[\pi /2\] |
| Answer» B. \[\pi /6\] | |
| 708. |
The distance of the point (1, -2, 3) from the plane \[x-y+z=5\] measured parallel to the line \[\frac{x}{2}=\frac{y}{3}=\frac{z-1}{-6}\] is |
| A. | 1 |
| B. | 2 |
| C. | 4 |
| D. | \[2\sqrt{3}\] |
| Answer» B. 2 | |
| 709. |
The ratio of the areas bounded by the curves \[y=\cos x\] and \[y=\cos 2x\] between \[x=0,\] \[x=\pi /3\] and \[x-\]axis, is [MP PET 1997] |
| A. | \[\sqrt{2}:1\] |
| B. | \[1:1\] |
| C. | \[1:2\] |
| D. | \[2:1\] |
| Answer» E. | |
| 710. |
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then \[{{P}^{2}}{{R}^{3}}:{{S}^{3}}\] is equal to |
| A. | 0.0423611111111111 |
| B. | Common ratio: 1 |
| C. | \[{{\left( \text{first term} \right)}^{\text{2}}}\text{: }{{\left( \text{common ratio} \right)}^{\text{2}}}\] |
| D. | \[{{\left( common\text{ }ratio \right)}^{n}}:1\] |
| Answer» B. Common ratio: 1 | |
| 711. |
The value of \[\theta \]lying between 0 and \[\pi /2\]and satisfying the equation \[\left| \,\begin{matrix} 1+{{\sin }^{2}}\theta & {{\cos }^{2}}\theta & 4\sin 4\theta \\ {{\sin }^{2}}\theta & 1+{{\cos }^{2}}\theta & 4\sin 4\theta \\ {{\sin }^{2}}\theta & {{\cos }^{2}}\theta & 1+4\sin 4\theta \\ \end{matrix}\, \right|=0\] [IIT 1988; MNR 1992; Kurukshetra CEE 1998; DCE 1996] |
| A. | \[\frac{7\pi }{24}\] or \[\frac{11\pi }{24}\] |
| B. | \[\frac{5\pi }{24}\] |
| C. | \[\frac{\pi }{24}\] |
| D. | None of these |
| Answer» B. \[\frac{5\pi }{24}\] | |
| 712. |
\[\int_{0}^{\pi /2}{{{\sin }^{2m}}x\,dx=}\] |
| A. | \[\frac{2\,\,m\,\,!}{{{({{2}^{m}}.\,m\,\,!)}^{2}}}.\frac{\pi }{2}\] |
| B. | \[\frac{(2m)\,\,!}{{{({{2}^{m}}.\,m\,\,!)}^{2}}}.\frac{\pi }{2}\] |
| C. | \[\frac{2m\,\,!}{{{2}^{m}}.\,{{(m\,\,!)}^{2}}}.\frac{\pi }{2}\] |
| D. | None of these |
| Answer» C. \[\frac{2m\,\,!}{{{2}^{m}}.\,{{(m\,\,!)}^{2}}}.\frac{\pi }{2}\] | |
| 713. |
If \[A=\{2,\,4,\,5\},\,\,B=\{7,\,\,8,\,9\},\] then \[n(A\times B)\] is equal to |
| A. | 6 |
| B. | 9 |
| C. | 3 |
| D. | 0 |
| Answer» C. 3 | |
| 714. |
If \[A+B=\frac{\pi }{4},\]then \[(1+\tan A)(1+\tan B)=\] |
| A. | 1 |
| B. | 2 |
| C. | \[\infty \] |
| D. | -2 |
| Answer» C. \[\infty \] | |
| 715. |
If \[A\] and \[B\] are square matrices of same order, then [Roorkee 1995] |
| A. | \[A+B=B+A\] |
| B. | \[A+B=A-B\] |
| C. | \[A-B=B-A\] |
| D. | \[AB=BA\] |
| Answer» B. \[A+B=A-B\] | |
| 716. |
If \[\cos A=m\cos B,\]then [MNR 1990] |
| A. | \[\cot \frac{A+B}{2}=\frac{m+1}{m-1}\tan \frac{B-A}{2}\] |
| B. | \[\tan \frac{A+B}{2}=\frac{m+1}{m-1}\cot \frac{B-A}{2}\] |
| C. | \[\cot \frac{A+B}{2}=\frac{m+1}{m-1}\tan \frac{A-B}{2}\] |
| D. | None of these |
| Answer» B. \[\tan \frac{A+B}{2}=\frac{m+1}{m-1}\cot \frac{B-A}{2}\] | |
| 717. |
The equation of line passing through the point of intersection of the lines \[4x-3y-1=0\]and \[5x-2y-3=0\] and parallel to the line \[2y-3x+2=0,\] is [RPET 1985, 86, 88] |
| A. | \[x-3y=1\] |
| B. | \[3x-2y=1\] |
| C. | \[2x-3y=1\] |
| D. | \[2x-y=1\] |
| Answer» C. \[2x-3y=1\] | |
| 718. |
If \[A=\{4n+2|n\] is a natural number} and \[B=\{3n|n\] is a natural number,}, then what is \[(A\cap B)\] equal to? |
| A. | \[\{12{{n}^{2}}+6n|n\] is a natural number} |
| B. | \[\{24n-12|n\] is a natural number} |
| C. | \[\{60n+30|n\] is a natural number} |
| D. | \[\{12n-6|n\] is a natural number} |
| Answer» E. | |
| 719. |
If the projections of a line on the co-ordinate axes be 2, ?1, 2, then the length of the lines is |
| A. | 3 |
| B. | 4 |
| C. | 2 |
| D. | \[\frac{1}{2}\] |
| Answer» B. 4 | |
| 720. |
If \[A=\left[ \begin{matrix} 1 & -2 \\ 5 & 3 \\ \end{matrix} \right]\], then \[A+{{A}^{T}}\]equals [RPET 1994] |
| A. | \[\left[ \begin{matrix} 2 & 3 \\ 3 & 6 \\ \end{matrix} \right]\] |
| B. | \[\left[ \begin{matrix} 2 & -4 \\ 10 & 6 \\ \end{matrix} \right]\] |
| C. | \[\left[ \begin{matrix} 2 & 4 \\ -10 & 6 \\ \end{matrix} \right]\] |
| D. | None of these |
| Answer» B. \[\left[ \begin{matrix} 2 & -4 \\ 10 & 6 \\ \end{matrix} \right]\] | |
| 721. |
The co-ordinates of the point in which the line joining the points \[(3,\,\ 5,\ -7)\] and \[(-2,\,\ 1,\,\ 8)\] is intersected by the plane yz are given by [MP PET 1993] |
| A. | \[\left( 0,\,\frac{13}{5},\,\,2 \right)\] |
| B. | \[\left( 0,\,-\frac{13}{5},\,-2 \right)\] |
| C. | \[\left( 0,-\frac{13}{5},\frac{2}{5} \right)\] |
| D. | \[\left( 0,\frac{13}{5},\frac{2}{5} \right)\] |
| Answer» B. \[\left( 0,\,-\frac{13}{5},\,-2 \right)\] | |
| 722. |
The direction cosines of the normal to the plane \[x+2y-3z+4=0\] are [MP PET 1996; Pb. CET 2000] |
| A. | \[-\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}}\] |
| B. | \[\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}}\] |
| C. | \[-\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}}\] |
| D. | \[\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}}\] |
| Answer» B. \[\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}}\] | |
| 723. |
In an organization number of women are \[\mu \]times than that of men. If n things are distributed among them and the probability that the number of things Received by men are odd is\[\frac{1}{2}-{{\left( \frac{1}{2} \right)}^{n+1}}\], then \[\mu \] equal to |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | \[\frac{1}{4}\] |
| Answer» D. \[\frac{1}{4}\] | |
| 724. |
An urn contains five balls. Two balls are drawn and found to be white. The probability that all the balls are white is |
| A. | \[\frac{1}{10}\] |
| B. | \[\frac{3}{10}\] |
| C. | \[\frac{3}{5}\] |
| D. | \[\frac{1}{2}\] |
| Answer» E. | |
| 725. |
If \[A(3,\,5),B(-5,\,-4),C(7,\,10)\] are the vertices of a parallelogram, taken in the order, then the co-ordinates of the fourth vertex are [Kerala (Engg.) 2005] |
| A. | (10, 19) |
| B. | (15, 10) |
| C. | (19, 10) |
| D. | (19, 15) |
| E. | (e) (15, 19) |
| Answer» F. | |
| 726. |
\[\sqrt{2+\sqrt{2+2\cos 4\theta }}=\] |
| A. | \[\cos \theta \] |
| B. | \[\sin \theta \] |
| C. | \[2\cos \theta \] |
| D. | \[2\sin \theta \] |
| Answer» D. \[2\sin \theta \] | |
| 727. |
The real roots of the equation \[{{x}^{2}}+5|x|+\,\,4=0\] are [UPSEAT 1993, 99; Orissa JEE 2004] |
| A. | - 1, 4 |
| B. | 1, 4 |
| C. | - 4, 4 |
| D. | None of these |
| Answer» E. | |
| 728. |
A box contains 20 identical balls of which 10 are blue and 10 are green. The balls are drawn at random from the box. One at a time with replacement. The probability that a blue ball is drawn 4th time on the 7th draw is |
| A. | \[\frac{27}{32}\] |
| B. | \[\frac{5}{64}\] |
| C. | \[\frac{5}{32}\] |
| D. | \[\frac{1}{2}\] |
| Answer» D. \[\frac{1}{2}\] | |
| 729. |
A bag contains p white and q black ball. Two players A and B alternately draw a ball from the bag, replacing the balls each time after the draw till one of them draws a white ball and wins the game. If A begins the game and the probability of A winning the game is three times chat of B, then the ratio p:q is: |
| A. | 0.127777777777778 |
| B. | 0.16875 |
| C. | 0.0840277777777778 |
| D. | 1 : 2 |
| Answer» D. 1 : 2 | |
| 730. |
The bisector of the acute angle formed between the lines \[4x-3y+7=0\] and \[3x-4y+14=0\] has the equation: |
| A. | \[x+y+3=0\] |
| B. | \[x-y-3=0\] |
| C. | \[x-y+3=0\] |
| D. | \[3x+y-7=0\] |
| Answer» D. \[3x+y-7=0\] | |
| 731. |
If the point \[P(x,y)\] is equidistant from points\[A(a+b,b-a)\] and \[B(a-b,a+b)\], then |
| A. | \[ax=by\] |
| B. | \[bx=ay\] and P ca be (a, b) |
| C. | \[{{x}^{2}}-{{y}^{2}}=2(ax+by)\] |
| D. | None of the above |
| Answer» C. \[{{x}^{2}}-{{y}^{2}}=2(ax+by)\] | |
| 732. |
Let \[A\left( \alpha ,\frac{1}{\alpha } \right),B\left( \alpha ,\frac{1}{\beta } \right),C\left( \gamma ,\frac{1}{\gamma } \right)\] be the vertices of a \[\Delta ABC,\] where \[\alpha ,\beta \] are the roots of the equation \[{{x}^{2}}-6{{p}_{1}}x+2=0,\,\,\beta ,\,\,\gamma \]\[{{x}^{2}}-6{{p}_{1}}x+2=0,\beta ,\gamma \] are the roots of the equation \[{{x}^{2}}-6{{p}_{2}}x+3=0\] and \[\gamma ,\alpha \] are the roots of the equation \[{{x}^{2}}-6{{p}_{3}}x+6=0,{{p}_{1}},{{p}_{2}},{{p}_{3}}\] being positive. Then, the coordinates of the centroid of \[\Delta ABC\] is |
| A. | \[\left( 1,\frac{11}{18} \right)\] |
| B. | \[\left( 0,\frac{11}{8} \right)\] |
| C. | \[\left( 2,\frac{11}{18} \right)\] |
| D. | None of these |
| Answer» D. None of these | |
| 733. |
If \[g(x)={{x}^{2}}+x-2\] and \[\frac{1}{2}\] (gof) \[(x)=2{{x}^{2}}-5x+2,\] then \[f(x)\] is equal to |
| A. | \[2x-3\] |
| B. | \[2x+3\] |
| C. | \[2{{x}^{2}}+3x+1\] |
| D. | \[2{{x}^{2}}-3x-1\] |
| Answer» B. \[2x+3\] | |
| 734. |
The number of objective functions from a set A to itself when A contains 106 elements, is |
| A. | 106 |
| B. | \[{{(106)}^{2}}\] |
| C. | \[(106)!\] |
| D. | \[{{2}^{106}}\] |
| Answer» D. \[{{2}^{106}}\] | |
| 735. |
The graph of the function \[\cos x\,\cos \,(x+2)-co{{s}^{2}}(x+1)\] is |
| A. | A straight line passing through \[(0,-si{{n}^{2}}1)\] with slope 2 |
| B. | A straight line passing through (0, 0) |
| C. | A parabola with vertex \[(1,-si{{n}^{2}}1)\] |
| D. | A straight line passing through the point \[\left( \frac{\pi }{2},-{{\sin }^{2}}1 \right)\]and parallel to the x-axis. |
| Answer» E. | |
| 736. |
Period of the function \[\left| {{\sin }^{3}}\frac{x}{2} \right|+\left| {{\cos }^{5}}\frac{x}{5} \right|\]is: |
| A. | \[2\pi \] |
| B. | \[10\pi \] |
| C. | \[8\pi \] |
| D. | \[5\pi \] |
| Answer» C. \[8\pi \] | |
| 737. |
Let\[0 |
| A. | \[\tan \left( x-\frac{\pi }{4} \right)\] |
| B. | \[\tan \left( \frac{\pi }{4}-x \right)\] |
| C. | \[\tan \left( x+\frac{\pi }{4} \right)\] |
| D. | \[{{\tan }^{2}}\left( x+\frac{\pi }{4} \right)\] |
| Answer» C. \[\tan \left( x+\frac{\pi }{4} \right)\] | |
| 738. |
The point of contact of the tangent to the circle \[{{x}^{2}}+{{y}^{2}}=5\]at the point (1, ?2) which touches the circle \[{{x}^{2}}+{{y}^{2}}-8x+6y+20=0\], is [Roorkee 1989] |
| A. | (2, -1) |
| B. | (3, -1) |
| C. | (4, -1) |
| D. | (5, -1) |
| Answer» C. (4, -1) | |
| 739. |
If a set A has n elements, then the total number of subsets of A is [Roorkee 1991; Karnataka CET 1992, 2000] |
| A. | n |
| B. | \[{{n}^{2}}\] |
| C. | \[{{2}^{n}}\] |
| D. | \[2n\] |
| Answer» D. \[2n\] | |
| 740. |
If \[f:R\to R\] is defined by \[f(x)=3x+\left| x \right|,\] then\[f(2x)-f(-x)-6x=\] |
| A. | \[f(x)\] |
| B. | \[2f(x)\] |
| C. | \[-f(x)\] |
| D. | \[f(-x)\] |
| Answer» B. \[2f(x)\] | |
| 741. |
In the following frequency distribution. Class limits of some of the class intervals and mid-vale of a class are missing. However, the mean of the distribution is known to be 46.5. Class intervals Mid-values Frequency \[{{x}_{1}}-{{x}_{2}}\] 15 10 \[{{x}_{2}}-{{x}_{3}}\] 30 40 \[{{x}_{3}}-{{x}_{4}}\] M 30 \[{{x}_{4}}-{{x}_{5}}\] 75 10 \[{{x}_{5}}-100\] 90 10 The values of \[{{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}},{{x}_{5}}\] respectively will be |
| A. | \[(0,20,40,60,80)\] |
| B. | \[(40,50,60,70,80)\] |
| C. | \[(10,20,40,70,80)\] |
| D. | \[(0,19.5,39.5,69.5,80)\] |
| Answer» D. \[(0,19.5,39.5,69.5,80)\] | |
| 742. |
Let \[\bar{x}\] be the mean of n observations \[{{x}_{1}},{{x}_{2}},...{{x}_{n}},\]if \[(a-b)\] is added to each observation, then what is the mean of new set of observations? |
| A. | 0 |
| B. | \[\bar{x}\] |
| C. | \[\bar{x}-(a-b)\] |
| D. | \[\bar{x}+(a-b)\] |
| Answer» E. | |
| 743. |
\[\mathbf{a}\times (\mathbf{b}\times \mathbf{c})\] is coplanar with |
| A. | b and c |
| B. | c and a |
| C. | a and b |
| D. | a, b and c |
| Answer» B. c and a | |
| 744. |
\[f(x)=\frac{x(x-p)}{q-p}+\frac{x(x-q)}{p-q},\] \[p\ne q\]. What is the value of\[f\left( q \right)+f\left( q \right)\]? |
| A. | \[f(p-q)\] |
| B. | \[f(p+q)\] |
| C. | \[f(p(p+q))\] |
| D. | \[f(q(p-q))\] |
| Answer» C. \[f(p(p+q))\] | |
| 745. |
If \[\sin A=\frac{1}{\sqrt{10}}\]and \[\sin B=\frac{1}{\sqrt{5}},\]where A and B are positive acute angles, then \[A+B=\] [MP PET 1986] |
| A. | \[\pi \] |
| B. | \[\pi /2\] |
| C. | \[\pi /3\] |
| D. | \[\pi /4\] |
| Answer» E. | |
| 746. |
The range of a random variable x is \[\{1,2,3,...\}.\] If \[P(x=r)=\frac{1}{{{2}^{r}}}\], then the mean of the distribution is |
| A. | 8 |
| B. | 16 |
| C. | 1 |
| D. | 2 |
| Answer» E. | |
| 747. |
A 10cm long rod AB moves with its ends on two mutually perpendicular straight lines OX and OY. If the end A be moving at the rate of \[2cm/\sec \], then when the distance of A from O is \[8cm\], the rate at which the end B is moving, is [SCRA 1996] |
| A. | \[\frac{8}{3}cm/\sec \] |
| B. | \[\frac{4}{3}cm/\sec \] |
| C. | \[\frac{2}{9}cm/\sec \] |
| D. | None of these |
| Answer» B. \[\frac{4}{3}cm/\sec \] | |
| 748. |
A vector of magnitude 3, bisecting the angle between the vectors \[\overset{\to }{\mathop{a}}\,=2\hat{i}+\hat{j}-\hat{k}\] and \[\overset{\to }{\mathop{b}}\,=\hat{i}-2\hat{j}+\hat{k}\] and making an obtuse angle with \[\overset{\to }{\mathop{b}}\,\] is |
| A. | \[\frac{3\hat{i}-\hat{j}}{\sqrt{6}}\] |
| B. | \[\frac{\hat{i}+3\hat{j}-2\hat{k}}{\sqrt{14}}\] |
| C. | \[\frac{3(\hat{i}+3\hat{j}-2\hat{k})}{\sqrt{14}}\] |
| D. | \[\frac{3\hat{i}-\hat{j}}{\sqrt{10}}\] |
| Answer» D. \[\frac{3\hat{i}-\hat{j}}{\sqrt{10}}\] | |
| 749. |
If vector \[a=2i-3j+6k\] and vector \[b=-2i+2j-k\],\[\text{then}\,\,\,\frac{\text{Projection}\,\,\text{of}\,\,\text{vector}\,\,\text{a}\,\,\text{on}\,\,\text{vector}\,\,\text{b}}{\text{Projection}\,\,\text{of}\,\,\text{vector}\,\,\text{b}\,\,\text{on}\,\,\text{vector}\,\,\text{a}}\text{=}\] |
| A. | \[\frac{3}{7}\] |
| B. | \[\frac{7}{3}\] |
| C. | 3 |
| D. | 7 |
| Answer» C. 3 | |
| 750. |
One set containing five members has mean 8, variance 18 and the second set containing three members has mean 8 and variance 24. The variance of combined set of numbers is |
| A. | 24 |
| B. | 20.25 |
| C. | 22.25 |
| D. | None of these |
| Answer» C. 22.25 | |