Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

5151.

The sum of the series\[\frac{1}{1.2}+\frac{1.3}{1.2.3.4}+\frac{1.3.5}{1.2.3.4.5.6}+.....\infty \] is [Kurukshetra CEE 2002]

A. \[15e\]
B. \[{{e}^{1/2}}+e\]
C. \[{{e}^{1/2}}-1\]
D. \[{{e}^{1/2}}-e\]
Answer» D. \[{{e}^{1/2}}-e\]
5152.

The coefficient of  \[{{x}^{r}}\] in the expansion of \[1+\frac{a+bx}{1\,!}+\frac{{{(a+bx)}^{2}}}{2\,!}+.....+\frac{{{(a+bx)}^{n}}}{n\,!}+.....\] is [MP PET 1989]

A. \[\frac{{{(a+b)}^{r}}}{r\,!}\]
B. \[\frac{{{b}^{r}}}{r\,!}\]
C. \[\frac{{{e}^{a}}{{b}^{r}}}{r\,!}\]
D. \[{{e}^{a+{{b}^{r}}}}\]
Answer» D. \[{{e}^{a+{{b}^{r}}}}\]
5153.

The sum of \[\frac{2}{1\,!}+\frac{6}{2\,!}+\frac{12}{3\,!}+\frac{20}{4\,!}+\].......is [UPSEAT 2000]

A. \[\frac{3e}{2}\]
B. \[e\]
C. \[2e\]
D. \[3e\]
Answer» E.
5154.

Sum of the infinite series \[1+2+\frac{1}{2!}+\frac{2}{3!}+\frac{1}{4!}+\frac{2}{5!}+.....\] is [Roorkee 2000]

A. \[{{e}^{2}}\]
B. \[e+{{e}^{-1}}\]
C. \[\frac{e-{{e}^{-1}}}{2}\]
D. \[\frac{3e-{{e}^{-1}}}{2}\]
Answer» E.
5155.

The sum of the infinite series  \[\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+......\]is  [AMU 1999]

A. \[e-2\]
B. \[\frac{2}{3}e-1\]
C. 1
D. 44230
Answer» D. 44230
5156.

The value of \[\sqrt{e}\] will be [UPSEAT 1999]

A. 1.648
B. 1.547
C. 1.447
D. 1.348
Answer» B. 1.547
5157.

The coefficient of \[{{x}^{n}}\] in the expansion of \[\frac{{{e}^{7x}}+{{e}^{x}}}{{{e}^{3x}}}\] is    [MP PET 1999]

A. \[\frac{{{4}^{n-1}}+{{(-2)}^{n}}}{n\,!}\]
B. \[\frac{{{4}^{n-1}}+{{2}^{n}}}{n\,!}\]
C. \[\frac{{{4}^{n-1}}+{{(-2)}^{n-1}}}{n\,!}\]
D. \[\frac{{{4}^{n}}+{{(-2)}^{n}}}{n\,!}\]
Answer» E.
5158.

If \[S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+....+\infty ,\] then \[{{e}^{S}}=\]  [MP PET 1999]

A. \[{{\log }_{e}}\left( \frac{4}{e} \right)\]
B. \[\frac{4}{e}\]
C. \[{{\log }_{e}}\left( \frac{e}{4} \right)\]
D. \[\frac{e}{4}\]
Answer» C. \[{{\log }_{e}}\left( \frac{e}{4} \right)\]
5159.

The value of \[1-\log 2+\frac{{{(\log 2)}^{2}}}{2\,!}-\frac{{{(\log 2)}^{3}}}{3\,!}+....\]  is   [MP PET 1998; Pb. CET 2000]

A. 2
B. \[\frac{1}{2}\]
C. \[\log 3\]
D. None of these
Answer» C. \[\log 3\]
5160.

\[1+\frac{{{({{\log }_{e}}n)}^{2}}}{2\,!}+\frac{{{({{\log }_{e}}n)}^{4}}}{4\,!}+....=\] [MP PET 1996]

A. \[n\]
B. \[1/n\]
C. \[\frac{1}{2}(n+{{n}^{-1}})\]
D.   \[\frac{1}{2}({{e}^{n}}+{{e}^{-n}})\]
Answer» D.   \[\frac{1}{2}({{e}^{n}}+{{e}^{-n}})\]
5161.

Which of the following is not true   [Kurukshetra CEE 1996]

A. \[\log (1+x)<x\] for \[x>0\]
B. \[\frac{x}{1+x}<\log (1+x)\]for \[x>0\]
C. \[{{e}^{x}}>1+x\] for \[x>0\]
D. \[{{e}^{-x}}<1-x\] for \[x>0\]
Answer» E.
5162.

\[\frac{1\,.\,2}{1\,!}+\frac{2\,.\,3}{2\,!}+\frac{3\,.\,4}{3\,!}+\frac{4\,.\,5}{4\,!}+.....\infty =\]

A. \[2\,e\]
B. \[3\,e\]
C. \[3\,e-1\]
D. \[e\]
Answer» C. \[3\,e-1\]
5163.

Sum to infinity of the series is  \[1+\frac{{{x}^{2}}}{2\,!}+\frac{{{x}^{4}}}{4\,!}+......\] is [MP PET 1994]

A. \[\frac{{{e}^{x}}-{{e}^{-x}}}{2}\]
B. \[\frac{{{e}^{x}}+{{e}^{-x}}}{2}\]
C. \[\frac{{{e}^{-x}}-{{e}^{x}}}{2}\]
D.   \[\frac{-({{e}^{x}}+{{e}^{-x}})}{2}\]
Answer» C. \[\frac{{{e}^{-x}}-{{e}^{x}}}{2}\]
5164.

If   \[{{T}_{n}}=\frac{{{3}^{n}}}{2\,(n\,!)}-\frac{1}{2\,(n\,!)},\] then \[{{S}_{\infty }}=\]

A. \[\frac{{{e}^{3}}-1}{2}\]
B. \[\frac{{{e}^{3}}-e}{2}\]
C. \[\frac{e-3}{2}\]
D. None of these
Answer» C. \[\frac{e-3}{2}\]
5165.

The coefficient of \[{{x}^{r}}\] in the expansion of \[{{e}^{{{e}^{x}}}}\] is

A. \[\frac{{{1}^{r}}}{1\,!}+\frac{{{2}^{r}}}{2\,!}+\frac{{{3}^{r}}}{3\,!}+.....\]
B. \[1+\frac{1}{1\,!}+\frac{1}{2\,!}+....+\frac{1}{r\,!}\]
C. \[\frac{1}{r\,!}\left[ \frac{{{1}^{r}}}{1\,!}+\frac{{{2}^{r}}}{2\,!}+\frac{{{3}^{r}}}{3\,!}+.... \right]\]
D. \[\frac{{{e}^{r}}}{r!}\]
Answer» D. \[\frac{{{e}^{r}}}{r!}\]
5166.

The value of \[\frac{2\frac{1}{2}}{1\,!}+\frac{3\frac{1}{2}}{2\,!}+\frac{4\frac{1}{2}}{3\,!}+\frac{5\frac{1}{2}}{4\,!}+......\infty \] is

A. \[1+e\]
B. \[\frac{1+e}{e}\]
C. \[\frac{e-1}{e}\]
D. None of these
Answer» E.
5167.

\[\frac{1}{2}+\frac{1}{4}+\frac{1}{8(2)\,!}+\frac{1}{16\,(3)\,!}+\frac{1}{32(4)\,!}+......\infty =\]

A. \[e\]
B. \[\sqrt{e}\]
C. \[\frac{\sqrt{e}}{2}\]
D. None of these
Answer» D. None of these
5168.

\[\left( 1+\frac{1}{2\,!}+\frac{1}{4\,!}+.... \right)\,\,\left( 1+\frac{1}{3\,!}+\frac{1}{5\,!}+.... \right)\,=\]

A. \[{{e}^{4}}\]
B. \[\frac{{{e}^{2}}-1}{{{e}^{2}}}\]
C. \[\frac{{{e}^{4}}-1}{4\,{{e}^{2}}}\]
D. \[\frac{{{e}^{4}}+1}{4\,{{e}^{2}}}\]
Answer» D. \[\frac{{{e}^{4}}+1}{4\,{{e}^{2}}}\]
5169.

\[1+\frac{1+3}{2\,!}+\frac{1+3+5}{3\,!}+\frac{1+3+5+7}{4\,!}+.......\infty =\]

A. \[e/2\]
B. \[e\]
C. \[2\,e\]
D. \[3e\]
Answer» D. \[3e\]
5170.

\[\frac{{{e}^{2}}+1}{2\,e}=\]

A. \[1+\frac{2}{2\,!}+\frac{{{2}^{2}}}{3\,!}+\frac{{{2}^{3}}}{4\,!}+.....\infty \]
B.  \[1+\frac{1}{2\,!}+\frac{1}{4\,!}+\frac{1}{6\,!}+.....\infty \]
C. \[\frac{1}{2}\left( 1+\frac{1}{2\,!}+\frac{1}{4\,!}+....\infty  \right)\]
D. \[\frac{1}{2}\left( 1+\frac{1}{1\,!}+\frac{1}{2\,!}+\frac{1}{3\,!}+....\infty  \right)\]
Answer» C. \[\frac{1}{2}\left( 1+\frac{1}{2\,!}+\frac{1}{4\,!}+....\infty  \right)\]
5171.

\[1+\frac{a-bx}{1\,!}+\frac{{{(a-bx)}^{2}}}{2\,!}+\frac{{{(a-bx)}^{3}}}{3\,!}+....\infty =\]

A. \[{{e}^{a-bx}}\]
B. \[{{e}^{a-bx}}-1\]
C. \[1+a{{\log }_{e}}(a-bx)\]
D. \[{{e}^{-bx}}\]
Answer» B. \[{{e}^{a-bx}}-1\]
5172.

In  the expansion of  \[\frac{{{e}^{4x}}-1}{{{e}^{2x}}}\], the coefficient of \[{{x}^{2}}\] is

A. \[\frac{1}{2}\]
B. 1
C. 0
D. None of these
Answer» D. None of these
5173.

\[3+\frac{5}{1\,!}+\frac{7}{2\,!}+\frac{9}{3\,!}+.....\infty =\]

A. \[3\,e\]
B. \[5\,e\]
C. \[5\,e-1\]
D. None of these
Answer» C. \[5\,e-1\]
5174.

\[1+\frac{a-b}{a}+\frac{1}{2\,!}{{\left( \frac{a-b}{a} \right)}^{2}}+\frac{1}{3\,!}{{\left( \frac{a-b}{a} \right)}^{3}}+......\infty =\]

A. \[x=\]
B. \[{{e}^{a}}\]
C. \[\frac{e}{{{e}^{b/a}}}\]
D. \[\frac{e}{{{e}^{a/b}}}\]
Answer» D. \[\frac{e}{{{e}^{a/b}}}\]
5175.

\[\frac{2}{3\,!}+\frac{4}{5\,!}+\frac{6}{7\,!}+......\infty =\]   [MNR 1979; MP PET 1995, 2002; Pb. CET 2002]

A. \[e\]
B. \[2\,e\]
C. \[{{e}^{2}}\]
D. \[1/e\]
Answer» E.
5176.

\[1+\frac{{{2}^{3}}}{2\,!}+\frac{{{3}^{3}}}{3\,!}+\frac{{{4}^{3}}}{4\,!}+....\infty \] =  [MNR 1976; MP PET 1997]

A. \[2\,e\]
B. \[3\,e\]
C. \[4\,e\]
D. \[5\,e\]
Answer» E.
5177.

\[1+\frac{1}{3\,!}+\frac{1}{5\,!}+\frac{1}{7\,!}+.....\infty =\] [MP PET 1991]

A. \[{{e}^{-1}}\]
B. \[e\]
C. \[\frac{e+{{e}^{-1}}}{2}\]
D. \[\frac{e-{{e}^{-1}}}{2}\]
Answer» E.
5178.

\[{{\left[ 1+\frac{1}{2\,!}+\frac{1}{4\,!}+....\infty  \right]}^{2}}-{{\left[ 1+\frac{1}{3\,!}+\frac{1}{5\,!}+.....\infty  \right]}^{2}}=\]

A.  0
B. 1
C. \[-1\]
D. 2
Answer» C. \[-1\]
5179.

If   \[y=1+\frac{x}{1\,!}+\frac{{{x}^{2}}}{2\,!}+\frac{{{x}^{3}}}{3\,!}+......\infty \],  then \[x=\]

A. \[{{\log }_{e}}y\]
B. \[{{\log }_{e}}\frac{1}{y}\]
C. \[{{e}^{y}}\]
D. \[{{e}^{-y}}\]!
Answer» B. \[{{\log }_{e}}\frac{1}{y}\]
5180.

The value of \[\left| \,\begin{matrix}    41 & 42 & 43  \\    44 & 45 & 46  \\    47 & 48 & 49  \\ \end{matrix}\, \right|=\] [Karnataka CET 2001]

A. 2
B. 4
C. 0
D. 1
Answer» D. 1
5181.

If \[\left| \,\begin{matrix}    {{(b+c)}^{2}} & {{a}^{2}} & {{a}^{2}}  \\    {{b}^{2}} & {{(c+a)}^{2}} & {{b}^{2}}  \\    {{c}^{2}} & {{c}^{2}} & {{(a+b)}^{2}}  \\ \end{matrix}\, \right|=k\,abc{{(a+b+c)}^{3}}\], then the value of k is       [Tamilnadu (Engg.) 2001]

A. -1
B. 1
C. 2
D. -2
Answer» D. -2
5182.

Let \[\omega =-\frac{1}{2}+i\frac{\sqrt{3}}{2}\]. Then the value of the determinant \[\left| \,\begin{matrix}    1 & 1 & 1  \\    1 & -1-{{\omega }^{2}} & {{\omega }^{2}}  \\    1 & {{\omega }^{2}} & {{\omega }^{4}}  \\ \end{matrix}\, \right|\]is [IIT Screening 2002]

A. \[3\omega \]
B. \[3\omega (\omega -1)\]
C. \[3{{\omega }^{2}}\]
D. \[3\omega (1-\omega )\]
Answer» C. \[3{{\omega }^{2}}\]
5183.

At what value of \[x,\]will \[\left| \,\begin{matrix}    x+{{\omega }^{2}} & \omega  & 1  \\    \omega  & {{\omega }^{2}} & 1+x  \\    1 & x+\omega  & {{\omega }^{2}}  \\ \end{matrix}\, \right|=0\] [DCE 2000, 01]

A. \[x=0\]
B. \[x=1\]
C. \[x=-1\]
D. None of these
Answer» B. \[x=1\]
5184.

The value of \[\left| \,\begin{matrix}    {{5}^{2}} & {{5}^{3}} & {{5}^{4}}  \\    {{5}^{3}} & {{5}^{4}} & {{5}^{5}}  \\    {{5}^{4}} & {{5}^{5}} & {{5}^{7}}  \\ \end{matrix}\, \right|\]is

A. \[{{5}^{2}}\]
B. 0
C. \[{{5}^{13}}\]
D. \[{{5}^{9}}\]
Answer» C. \[{{5}^{13}}\]
5185.

If \[\left| \,\begin{matrix}    {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\    {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\    {{a}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix}\, \right|=5\]; then the value of  \[\left| \,\begin{matrix}    {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} & {{c}_{2}}{{a}_{3}}-{{c}_{3}}{{a}_{2}} & {{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}}  \\    {{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}} & {{c}_{3}}{{a}_{1}}-{{c}_{1}}{{a}_{3}} & {{a}_{3}}{{b}_{1}}-{{a}_{1}}{{b}_{3}}  \\    {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} & {{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}} & {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}  \\ \end{matrix}\, \right|\] is [Tamilnadu (Engg.) 2002]

A. 5
B. 25
C. 125
D. 0
Answer» C. 125
5186.

If \[\left| \,\begin{matrix}    a & b & c  \\    m & n & p  \\    x & y & z  \\ \end{matrix}\, \right|=k\], then \[\left| \,\begin{matrix}    6a & 2b & 2c  \\    3m & n & p  \\    3x & y & z  \\ \end{matrix}\, \right|=\] [Tamilnadu (Engg.) 2002]

A. \[k/6\]
B. \[2k\]
C. \[3k\]
D. \[6k\]
Answer» E.
5187.

If \[A=\left| \,\begin{matrix}    -1 & 2 & 4  \\    3 & 1 & 0  \\    -2 & 4 & 2  \\ \end{matrix}\, \right|\]and \[B=\left| \,\begin{matrix}    -2 & 4 & 2  \\    6 & 2 & 0  \\    -2 & 4 & 8  \\ \end{matrix}\, \right|\], then B is given by [Tamilnadu (Engg.) 2002]

A. \[B=4A\]
B. \[B=-4A\]
C. \[B=-A\]
D. \[B=6A\]
Answer» C. \[B=-A\]
5188.

If \[ab+bc+ca=0\] and \[\left| \,\begin{matrix}    a-x & c & b  \\    c & b-x & a  \\    b & a & c-x  \\ \end{matrix}\, \right|=0\], then one of the value of x is  [AMU 2000]

A. \[{{({{a}^{2}}+{{b}^{2}}+{{c}^{2}})}^{\frac{1}{2}}}\]
B. \[{{\left[ \frac{3}{2}({{a}^{2}}+{{b}^{2}}+{{c}^{2}}) \right]}^{\frac{1}{2}}}\]
C. \[{{\left[ \frac{1}{2}({{a}^{2}}+{{b}^{2}}+{{c}^{2}}) \right]}^{\frac{1}{2}}}\]
D. None of these
Answer» E.
5189.

If \[\omega \] is the cube root of unity, then \[\left| \begin{matrix}    1 & \omega  & {{\omega }^{2}}  \\    \omega  & {{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & \omega   \\ \end{matrix} \right|\]=   [RPET 1985, 93, 94; MP PET 1990, 2002;  Karnataka CET 1992; 93, 02, 05]

A. 1
B. 0
C. \[\omega \]
D. \[{{\omega }^{2}}\]
Answer» C. \[\omega \]
5190.

If \[\left| \,\begin{matrix}    a & b & a+b  \\    b & c & b+c  \\    a+b & b+c & 0  \\ \end{matrix}\, \right|=0\]; then \[a,b,c\] are in   [AMU 2000]

A. A. P.
B. G. P.
C. H. P.
D. None of these
Answer» C. H. P.
5191.

The value of the determinant given below \[\left| \text{ }\begin{matrix}    1 & 2 & 3  \\    3 & 5 & 7  \\    8 & 14 & 20  \\ \end{matrix} \right|\] is  [UPSEAT 2000]

A. 20
B. 10
C. 0
D. 5
Answer» D. 5
5192.

The sum of the products of the elements of any row of a determinant A with the same row is always equal to [Karnataka CET 2000]

A. 1
B. 0
C. |A|
D. \[\frac{1}{2}|A|\]
Answer» D. \[\frac{1}{2}|A|\]
5193.

\[\left| \,\begin{matrix}    {{a}^{2}}+{{x}^{2}} & ab & ca  \\    ab & {{b}^{2}}+{{x}^{2}} & bc  \\    ca & bc & {{c}^{2}}+{{x}^{2}}  \\ \end{matrix}\, \right|\] is divisor of  [RPET 2000]

A. \[{{a}^{2}}\]
B. \[{{b}^{2}}\]
C. \[{{c}^{2}}\]
D. \[{{x}^{2}}\]
Answer» E.
5194.

If \[{{a}^{-1}}+{{b}^{-1}}+{{c}^{-1}}=0\] such that \[\left| \,\begin{matrix}    1+a & 1 & 1  \\    1 & 1+b & 1  \\    1 & 1 & 1+c  \\ \end{matrix}\, \right|=\lambda \], then the value of \[\lambda \]is [RPET 2000]

A. 0
B. abc
C.
D. None of these
Answer» C.
5195.

If \[a\ne 6,b,c\]satisfy \[\left| \,\begin{matrix}    a & 2b & 2c  \\    3 & b & c  \\    4 & a & b  \\ \end{matrix}\, \right|=0,\]then \[abc=\] [EAMCET 2000]

A. \[a+b+c\]
B. 0
C. \[{{b}^{3}}\]
D. \[ab+bc\]
Answer» D. \[ab+bc\]
5196.

If \[\Delta =\left| \,\begin{matrix}    x & y & z  \\    p & q & r  \\    a & b & c  \\ \end{matrix}\, \right|,\]then \[\left| \,\begin{matrix}    x & 2y & z  \\    2p & 4q & 2r  \\    a & 2b & c  \\ \end{matrix}\, \right|\]equals [RPET 1999]

A. \[{{\Delta }^{2}}\]
B. \[4\Delta \]
C. \[3\Delta \]
D. None of these
Answer» C. \[3\Delta \]
5197.

If \[a,b,c\] are in A.P., then the value of \[\left| \,\begin{matrix}    x+2 & x+3 & x+a  \\    x+4 & x+5 & x+b  \\    x+6 & x+7 & x+c  \\ \end{matrix}\, \right|\] is [RPET 1999]

A. \[x-(a+b+c)\]
B. \[9{{x}^{2}}+a+b+c\]
C. \[a+b+c\]
D. 0
Answer» E.
5198.

If \[\left| \,\begin{matrix}    3x-8 & 3 & 3  \\    3 & 3x-8 & 3  \\    3 & 3 & 3x-8  \\ \end{matrix}\, \right|=0,\]then the values of x are [RPET 1997]

A. 0, 2/3
B. 2/3, 11/3
C. 1/2, 1
D. 11/3, 1
Answer» C. 1/2, 1
5199.

The determinant \[\,\left| \,\begin{matrix}    1 & 1 & 1  \\    1 & 2 & 3  \\    1 & 3 & 6  \\ \end{matrix}\, \right|\]is not equal to   [MP PET 1988]

A. \[\left| \,\begin{matrix}    2 & 1 & 1  \\    2 & 2 & 3  \\    2 & 3 & 6  \\ \end{matrix}\, \right|\]
B. \[\left| \,\begin{matrix}    2 & 1 & 1  \\    3 & 2 & 3  \\    4 & 3 & 6  \\ \end{matrix}\, \right|\]
C. \[\left| \begin{matrix}    1 & 2 & 1  \\    1 & 5 & 3  \\    1 & 9 & 6  \\ \end{matrix} \right|\]
D. \[\left| \,\begin{matrix}    3 & 1 & 1  \\    6 & 2 & 3  \\    10 & 3 & 6  \\ \end{matrix} \right|\,\]
Answer» B. \[\left| \,\begin{matrix}    2 & 1 & 1  \\    3 & 2 & 3  \\    4 & 3 & 6  \\ \end{matrix}\, \right|\]
5200.

If \[{{\left| \,\begin{matrix}    4 & 1  \\    2 & 1  \\ \end{matrix}\, \right|}^{2}}=\left| \,\begin{matrix}    3 & 2  \\    1 & x  \\ \end{matrix}\, \right|-\left| \,\begin{matrix}    x & 3  \\    -2 & 1  \\ \end{matrix}\, \right|\], then x = [RPET 1996]

A. -14
B. 2
C. 6
D. 7
Answer» D. 7