Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

5101.

Family of curves \[y={{e}^{x}}(A\cos x+B\sin x)\], represents the differential equation          [MP PET 1999]

A.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=2\frac{dy}{dx}-y\]             
B.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=2\frac{dy}{dx}-2y\]
C.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{dy}{dx}-2y\]             
D.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=2\frac{dy}{dx}+y\]
Answer» C.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{dy}{dx}-2y\]             
5102.

Differential equation whose solution is \[y=cx+c-{{c}^{3}}\], is [MP PET 1997]

A.                 \[\frac{dy}{dx}=c\]              
B.                 \[y=x\frac{dy}{dx}+\frac{dy}{dx}-{{\left( \frac{dy}{dx} \right)}^{3}}\]
C.                 \[\frac{dy}{dx}=c-3{{c}^{2}}\]      
D.                 None of these
Answer» C.                 \[\frac{dy}{dx}=c-3{{c}^{2}}\]      
5103.

The differential equation of all the lines in the xy-plane is

A.                 \[\frac{dy}{dx}-x=0\]          
B.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}-x\frac{dy}{dx}=0\]
C.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=0\]        
D.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+x=0\]
Answer» D.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+x=0\]
5104.

The differential equation found by the elimination of the arbitrary constant K from the equation \[y=(x+K){{e}^{-x}}\]is

A.                 \[\frac{dy}{dx}-y={{e}^{-x}}\]       
B.                 \[\frac{dy}{dx}-y{{e}^{x}}=1\]
C.                 \[\frac{dy}{dx}+y{{e}^{x}}=1\]    
D.                 \[\frac{dy}{dx}+y={{e}^{-x}}\]
Answer» E.
5105.

The differential equation of all parabolas whose axes are parallel to y-axis is

A.                 \[\frac{{{d}^{3}}y}{d{{x}^{3}}}=0\]        
B.                 \[\frac{{{d}^{2}}x}{d{{y}^{2}}}=c\]
C.                 \[\frac{{{d}^{3}}y}{d{{x}^{3}}}+\frac{{{d}^{2}}x}{d{{y}^{2}}}=0\]         
D.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+2\frac{dy}{dx}=c\]
Answer» B.                 \[\frac{{{d}^{2}}x}{d{{y}^{2}}}=c\]
5106.

The differential equation of displacement of all "Simple harmonic motions" of given period \[2\pi /n\], is

A.                 \[\frac{{{d}^{2}}x}{d{{t}^{2}}}+nx=0\]  
B.                 \[\frac{{{d}^{2}}x}{d{{t}^{2}}}+{{n}^{2}}x=0\]
C.                 \[\frac{{{d}^{2}}x}{d{{t}^{2}}}-{{n}^{2}}x=0\] 
D.                 \[\frac{{{d}^{2}}x}{d{{t}^{2}}}+\frac{1}{{{n}^{2}}}x=0\]
Answer» C.                 \[\frac{{{d}^{2}}x}{d{{t}^{2}}}-{{n}^{2}}x=0\] 
5107.

The differential equation of all circles which passes through the origin and whose centre lies on y-axis, is [MNR 1986; DCE 2000]

A.                 \[({{x}^{2}}-{{y}^{2}})\frac{dy}{dx}-2xy=0\]         
B.                 \[({{x}^{2}}-{{y}^{2}})\frac{dy}{dx}+2xy=0\]
C.                 \[({{x}^{2}}-{{y}^{2}})\frac{dy}{dx}-xy=0\]           
D.                 \[({{x}^{2}}-{{y}^{2}})\frac{dy}{dx}+xy=0\]
Answer» B.                 \[({{x}^{2}}-{{y}^{2}})\frac{dy}{dx}+2xy=0\]
5108.

The differential equation of the family of curves \[{{y}^{2}}=4a(x+a)\], where a is an arbitrary constant, is

A.                 \[y\text{ }\left[ 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right]=2x\frac{dy}{dx}\]       
B.                 \[y\text{ }\left[ 1-{{\left( \frac{dy}{dx} \right)}^{2}} \right]=2x\frac{dy}{dx}\]
C.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+2\frac{dy}{dx}=0\]           
D.                 \[{{\left( \frac{dy}{dx} \right)}^{3}}+3\,\frac{dy}{dx}+y=0\]
Answer» C.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+2\frac{dy}{dx}=0\]           
5109.

The differential equation of all straight lines passing through the point  \[(1,\,-1)\]is    [MP PET 1994]

A.                 \[y=(x+1)\frac{dy}{dx}+1\]             
B.                 \[y=(x+1)\frac{dy}{dx}-1\]
C.                 \[y=(x-1)\frac{dy}{dx}+1\]
D.                 \[y=(x-1)\frac{dy}{dx}-1\]
Answer» E.
5110.

The differential equation of the family of curves \[v=\frac{A}{r}+B,\]where A and B are arbitrary constants, is

A.                 \[\frac{{{d}^{2}}v}{d{{r}^{2}}}+\frac{1}{r}\frac{dv}{dr}=0\]            
B.                 \[\frac{{{d}^{2}}v}{d{{r}^{2}}}-\frac{2}{r}\frac{dv}{dr}=0\]
C.                 \[\frac{{{d}^{2}}v}{d{{r}^{2}}}+\frac{2}{r}\frac{dv}{dr}=0\]            
D.                 None of these
Answer» D.                 None of these
5111.

The differential equation for the line  \[y=mx+c\] is (where c is arbitrary constant)

A.                 \[\frac{dy}{dx}=m\]            
B.                 \[\frac{dy}{dx}+m=0\]
C.                 \[\frac{dy}{dx}=0\]             
D.                 None of these
Answer» B.                 \[\frac{dy}{dx}+m=0\]
5112.

The differential equation whose solution is \[y={{c}_{1}}\cos ax+{{c}_{2}}\sin ax\] is (Where \[{{c}_{1}},\ {{c}_{2}}\]are arbitrary constants)                [MP PET 1996]

A.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+{{y}^{2}}=0\] 
B.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+{{a}^{2}}y=0\]
C.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+a{{y}^{2}}=0\]               
D.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}-{{a}^{2}}y=0\]
Answer» C.                 \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+a{{y}^{2}}=0\]               
5113.

The differential equation corresponding to primitive \[y={{e}^{cx}}\]is or                 The elimination of the arbitrary constant m from the equation \[y={{e}^{mx}}\]gives the differential equation [MP PET 1995, 2000; Pb. CET 2000]

A.                 \[\frac{dy}{dx}=\left( \frac{y}{x} \right)\log x\]
B.                 \[\frac{dy}{dx}=\left( \frac{x}{y} \right)\log y\]
C.                 \[\frac{dy}{dx}=\left( \frac{y}{x} \right)\log y\]
D.                 \[\frac{dy}{dx}=\left( \frac{x}{y} \right)\log x\]
Answer» D.                 \[\frac{dy}{dx}=\left( \frac{x}{y} \right)\log x\]
5114.

The point (4, 1)undergoes the following two successive transformation (i)        Reflection about the line \[y=x\] (ii)       Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are [MNR 1987; UPSEAT 2000]

A.            (4, 3)                                         
B.            (3, 4)
C.            (1, 4)                                         
D.            \[\left( \frac{7}{2},\frac{7}{2} \right)\]
Answer» C.            (1, 4)                                         
5115.

One vertex of the equilateral triangle with centroid at the origin and one side as \[x+y-2=0\]is

A.            \[(-1,-1)\]                                  
B.            \[(2,2)\]
C.            \[(-2,-2)\]                                  
D.            None of these
Answer» D.            None of these
5116.

The line \[2x+3y=12\]meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to \[AB\]meets the x- axis , y axis and the \[AB\] at C, D and E respectively. If O is the origin of coordinates, then the area of \[OCEB\]is  [IIT 1976]

A.            \[23\] sq. units                         
B.            \[\frac{23}{2}sq.\]units
C.            \[\frac{23}{3}sq.\]units            
D.            None of these
Answer» D.            None of these
5117.

The co-ordinates of the foot of perpendicular from the point (2, 3) on the line \[x+y-11=0\]are       [MP PET 1986]

A.            \[(-6,\,5)\]                                
B.            \[(5,\,6)\]
C.            \[(-5,\,6)\]                                
D.            \[(6,\,5)\]
Answer» C.            \[(-5,\,6)\]                                
5118.

The foot of the coordinates drawn from (2, 4) to the line \[x+y=1\] is                                                [Roorkee 1995]

A.            \[\left( \frac{1}{3},\frac{3}{2} \right)\]                                       
B.            \[\left( -\frac{1}{2},\frac{3}{2} \right)\]
C.            \[\left( \frac{4}{3},\frac{1}{2} \right)\]                                       
D.            \[\left( \frac{3}{4},\,\,-\frac{1}{2} \right)\]
Answer» C.            \[\left( \frac{4}{3},\frac{1}{2} \right)\]                                       
5119.

The coordinates of the foot of the perpendicular from \[({{x}_{1}},{{y}_{1}})\]to the line \[ax+by+c=0\] are      [Dhanbad Engg. 1973]

A.            \[\left( \frac{{{b}^{2}}{{x}_{1}}-ab{{y}_{1}}-ac}{{{a}^{2}}+{{b}^{2}}},\frac{{{a}^{2}}{{y}_{1}}-ab{{x}_{1}}-bc}{{{a}^{2}}+{{b}^{2}}} \right)\]
B.            \[\left( \frac{{{b}^{2}}{{x}_{1}}+ab{{y}_{1}}+ac}{{{a}^{2}}+{{b}^{2}}},\frac{{{a}^{2}}{{y}_{1}}+ab{{x}_{1}}+bc}{{{a}^{2}}+{{b}^{2}}} \right)\]
C.            \[\left( \frac{a{{x}_{1}}+b{{y}_{1}}+ab}{a+b},\frac{a{{x}_{1}}-b{{y}_{1}}-ab}{a+b} \right)\]
D.            None of these
Answer» B.            \[\left( \frac{{{b}^{2}}{{x}_{1}}+ab{{y}_{1}}+ac}{{{a}^{2}}+{{b}^{2}}},\frac{{{a}^{2}}{{y}_{1}}+ab{{x}_{1}}+bc}{{{a}^{2}}+{{b}^{2}}} \right)\]
5120.

If for a variable line \[\frac{x}{a}+\frac{y}{b}=1\], the condition \[\frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}=\frac{1}{{{c}^{2}}}\] (c is a constant) is satisfied, then locus of foot of perpendicular drawn from origin to the line is  [RPET 1999]

A.            \[{{x}^{2}}+{{y}^{2}}={{c}^{2}}/2\]   
B.            \[{{x}^{2}}+{{y}^{2}}=2{{c}^{2}}\]
C.            \[{{x}^{2}}+{{y}^{2}}={{c}^{2}}\]       
D.            \[{{x}^{2}}-{{y}^{2}}={{c}^{2}}\]
Answer» D.            \[{{x}^{2}}-{{y}^{2}}={{c}^{2}}\]
5121.

Coordinates of the foot of the perpendicular drawn from      (0,0) to the line joining \[(a\cos \alpha ,a\sin \alpha )\] and \[(a\cos \beta ,a\sin \beta )\] are  [IIT 1982]

A.            \[\left( \frac{a}{2},\frac{b}{2} \right)\]
B.            \[\left[ \frac{a}{2}(\cos \alpha +\cos \beta ),\frac{a}{2}(\sin \alpha +\sin \beta ) \right]\]
C.            \[\left( \cos \frac{\alpha +\beta }{2},\sin \frac{\alpha +\beta }{2} \right)\]          
D.            None of these
Answer» C.            \[\left( \cos \frac{\alpha +\beta }{2},\sin \frac{\alpha +\beta }{2} \right)\]          
5122.

If (- 2, 6) is the image of the point (4, 2) with respect to line L = 0, then L =                                      [EAMCET 2002]

A.            3x ? 2y + 5                                 
B.            3x ? 2y + 10
C.            2x + 3y ? 5                                 
D.            6x ? 4y ? 7
Answer» B.            3x ? 2y + 10
5123.

A straight line passes through a fixed point \[(h,k)\]. The locus of the foot of perpendicular on it drawn from the origin is

A.            \[{{x}^{2}}+{{y}^{2}}-hx-ky=0\] 
B.            \[{{x}^{2}}+{{y}^{2}}+hx+ky=0\]
C.            \[3{{x}^{2}}+3{{y}^{2}}+hx-ky=0\]    
D.            None of these
Answer» B.            \[{{x}^{2}}+{{y}^{2}}+hx+ky=0\]
5124.

The reflection of the point (4, -13) in the line \[5x+y+6=0\] is                                                             [EAMCET 1994]

A. \[(-1,-14)\]                                
B. (3 ,4)
C. (1, 2)                                         
D. (- 4, 13)
Answer» B. (3 ,4)
5125.

The image of a point \[A(3,\,8)\]in the line \[x+3y-7=0\], is  [RPET 1991]

A.            \[(-1,-4)\]                                  
B.            \[(-3\,,\,\,-8)\]
C.            \[(1,-4)\]                                   
D.            \[(3,\,8)\]
Answer» B.            \[(-3\,,\,\,-8)\]
5126.

The pedal points of a perpendicular drawn from origin on the line \[3x+4y-5=0\],  is                                        [RPET 1990]

A.            \[\left( \frac{3}{5},2 \right)\]  
B.            \[\left( \frac{3}{5},\frac{4}{5} \right)\]
C.            \[\left( -\frac{3}{5},-\frac{4}{5} \right)\]                                    
D.            \[\left( \frac{30}{17},\frac{19}{17} \right)\]
Answer» C.            \[\left( -\frac{3}{5},-\frac{4}{5} \right)\]                                    
5127.

Line L has intercepts a and b on the co-ordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts p and q, then   [IIT 1990; Kurukshetra CEE 1998]

A.            \[{{a}^{2}}+{{b}^{2}}={{p}^{2}}+{{q}^{2}}\]                                  
B.            \[\frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}=\frac{1}{{{p}^{2}}}+\frac{1}{{{q}^{2}}}\]
C.            \[{{a}^{2}}+{{p}^{2}}={{b}^{2}}+{{q}^{2}}\]                                  
D.            \[\frac{1}{{{a}^{2}}}+\frac{1}{{{p}^{2}}}=\frac{1}{{{b}^{2}}}+\frac{1}{{{q}^{2}}}\]
Answer» C.            \[{{a}^{2}}+{{p}^{2}}={{b}^{2}}+{{q}^{2}}\]                                  
5128.

Let L be the line \[2x+y=2\]. If the axes are rotated by \[{{45}^{o}}\], then the intercepts made by the line L on the new axes are respectively [Roorkee Qualifying 1998]

A.            \[\sqrt{2}\]and 1                      
B.            1 and \[\sqrt{2}\]
C.            \[2\sqrt{2}\]and  \[2\sqrt{2}/3\]     
D.            \[2\sqrt{2}/3\]and \[2\sqrt{2}\]
Answer» D.            \[2\sqrt{2}/3\]and \[2\sqrt{2}\]
5129.

The coordinates of the foot of the perpendicular from the point (2, 3) on the line \[y=3x+4\] are given by [MP PET 1984]

A.            \[\left( \frac{37}{10},-\frac{1}{10} \right)\]                               
B.            \[\left( -\frac{1}{10},\frac{37}{10} \right)\]
C.            \[\left( \frac{10}{37},-10 \right)\]   
D.            \[\left( \frac{2}{3},-\frac{1}{3} \right)\]
Answer» C.            \[\left( \frac{10}{37},-10 \right)\]   
5130.

\[\frac{2}{1\,!}+\frac{2+4}{2\,!}+\frac{2+4+6}{3\,!}+....\infty =\]  [MNR 1985]

A. \[e\]
B. \[2\,e\]
C. \[3\,e\]
D. None of these
Answer» D. None of these
5131.

In  the expansion of  \[\frac{{{e}^{7x}}+{{e}^{3x}}}{{{e}^{5x}}}\] , the constant term is

A. 0
B. 1
C. 2
D. None of these
Answer» D. None of these
5132.

In  the expansion of \[(1+x+{{x}^{2}}){{e}^{-x}}\],  the coefficient of  \[{{x}^{2}}\] is

A. 1
B. \[-1\]
C. 44228
D. -0.5
Answer» D. -0.5
5133.

The coefficients of \[{{x}^{3}}\] in the expansion of \[{{3}^{x}}\] is [Kerala (Engg.) 2005]

A. \[\frac{{{3}^{3}}}{6}\]
B. \[\frac{{{(\log 3)}^{3}}}{3}\]
C. \[\frac{\log ({{3}^{3}})}{6}\]
D. \[\frac{{{(\log 3)}^{3}}}{6}\]
E. \[\frac{3}{3\,!}\]
Answer» E. \[\frac{3}{3\,!}\]
5134.

In  the expansion of  \[\frac{{{e}^{5x}}+{{e}^{x}}}{{{e}^{3x}}}\], the coefficient of  \[{{x}^{4}}\]is

A. - \[6/5\]
B. 44259
C. -1.33333333333333
D. None of these
Answer» C. -1.33333333333333
5135.

\[(1+3){{\log }_{e}}3+\frac{1+{{3}^{2}}}{2\,!}{{({{\log }_{e}}3)}^{2}}+\frac{1+{{3}^{3}}}{3\,!}{{({{\log }_{e}}3)}^{3}}+.....\infty =\] [Roorkee 1989]

A. 28
B. 30
C. 25
D. 0
Answer» B. 30
5136.

\[1+\frac{{{\log }_{e}}x}{1\,!}+\frac{{{({{\log }_{e}}x)}^{2}}}{2\,!}+\frac{{{({{\log }_{e}}x)}^{3}}}{3\,!}+.....\infty =\] [Kurukshetra CEE 1998; JMI CET 2000]

A. \[{{\log }_{e}}x\]
B. \[x\]
C. \[{{x}^{-1}}\]
D. \[-{{\log }_{e}}(1+x)\]
Answer» C. \[{{x}^{-1}}\]
5137.

\[\frac{2}{1\,!}{{\log }_{e}}2+\frac{{{2}^{2}}}{2\,!}{{({{\log }_{e}}2)}^{2}}+\frac{{{2}^{3}}}{3\,!}{{({{\log }_{e}}2)}^{3}}+.....\infty =\]

A. 2
B. 3
C. 4
D. None of these
Answer» C. 4
5138.

The sum of the series \[\frac{{{1}^{2}}}{1\cdot 2\,!}+\frac{{{1}^{2}}+{{2}^{2}}}{2\cdot 3\,!}+\frac{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}{3\cdot 4\,!}+..+\frac{{{1}^{2}}+{{2}^{2}}+...+{{n}^{2}}}{n\cdot (n+1)\,!}+...\infty \]equals [AMU 2002]

A. \[{{e}^{2}}\]
B. \[\frac{1}{2}{{(e+{{e}^{-1}})}^{2}}\]
C. \[\frac{3e-1}{6}\]
D. \[\frac{4e+1}{6}\]
Answer» D. \[\frac{4e+1}{6}\]
5139.

If  \[i=\sqrt{-1}\],  then  \[\frac{{{e}^{xi}}+{{e}^{-xi}}}{2}=\]

A. \[1+\frac{{{x}^{2}}}{2\,!}+\frac{{{x}^{4}}}{4\,!}+.....\infty \]
B. \[1-\frac{{{x}^{2}}}{2\,!}+\frac{{{x}^{4}}}{4\,!}-.....\infty \]
C. \[x+\frac{{{x}^{3}}}{3\,!}+\frac{{{x}^{5}}}{5\,!}+....\infty \]
D. \[i\,\left[ x-\frac{{{x}^{3}}}{3\,!}+\frac{{{x}^{5}}}{5\,!}-.....\infty  \right]\]
Answer» C. \[x+\frac{{{x}^{3}}}{3\,!}+\frac{{{x}^{5}}}{5\,!}+....\infty \]
5140.

\[\frac{1}{2\,!}+\frac{1+2}{3\,!}+\frac{1+2+3}{4\,!}+......\infty =\] [EAMCET 2003]

A. \[e\]
B. \[2\,e\]
C. e/2
D. None of these
Answer» D. None of these
5141.

\[1+\frac{2}{3\,!}+\frac{3}{5\,!}+\frac{4}{7\,!}+......\infty =\,\]

A. e
B. \[2\,e\]
C. e/2
D. e/3
Answer» D. e/3
5142.

\[1+\frac{{{2}^{2}}}{1\,!}+\frac{{{3}^{2}}}{2\,!}+\frac{{{4}^{2}}}{3\,!}+......\infty =\]

A. \[2\,e\]
B. \[3\,e\]
C. \[(0.5)-\frac{{{(0.5)}^{2}}}{2}+\frac{{{(0.5)}^{3}}}{3}-\frac{{{(0.5)}^{4}}}{4}+....\]
D. \[5\,e\]
Answer» E.
5143.

If  \[y=x-\frac{{{x}^{2}}}{2\,!}+\frac{{{x}^{3}}}{3!}-\frac{{{x}^{4}}}{4\,!}+......,\] then \[x=\]

A. \[{{\log }_{e}}(1-y)\]
B. \[\frac{1}{{{\log }_{e}}(1-y)}\]
C. \[{{\log }_{e}}\frac{1}{1-y}\]
D. \[{{\log }_{e}}(1+y)\]
Answer» D. \[{{\log }_{e}}(1+y)\]
5144.

In  the expansion of  \[\frac{a+bx}{{{e}^{x}}}\],  the coefficient of \[{{x}^{r}}\] is

A. \[\frac{a-b}{r\,!}\]
B.   \[\frac{a-br}{r\,!}\]
C. \[{{(-1)}^{r}}\frac{a-br}{r\,!}\]
D. None of these
Answer» D. None of these
5145.

\[1+\frac{1+x}{2\,!}+\frac{1+x+{{x}^{2}}}{3\,!}+\frac{1+x+{{x}^{2}}+{{x}^{3}}}{4\,!}+.....\infty =\]

A. \[\frac{{{e}^{x}}+1}{x+1}\]
B. \[\frac{{{e}^{x}}+1}{x-1}\]
C. \[\frac{{{e}^{x}}-e}{x+1}\]
D. \[\frac{{{e}^{x}}-e}{x-1}\]
Answer» E.
5146.

\[1+\frac{3}{1\,!}+\frac{5}{2\,!}+\frac{7}{3\,!}+....\infty =\]

A. \[e\]
B. \[2\,e\]
C. \[3\,e\]
D. \[4\,e\]
Answer» D. \[4\,e\]
5147.

\[\frac{2}{1\,!}+\frac{4}{3\,!}+\frac{6}{5\,!}+\frac{8}{7\,!}+......\infty =\]   [JMI CET 2000]

A. \[1/e\]
B. \[e\]
C. \[2\,e\]
D. \[3e\]
Answer» C. \[2\,e\]
5148.

\[1+\frac{{{2}^{4}}}{2\,!}+\frac{{{3}^{4}}}{3\,!}+\frac{{{4}^{4}}}{4\,!}+.....\infty =\]

A. \[5\,e\]
B. \[e\]
C. \[15\,e\]
D. \[2\,e\]
Answer» D. \[2\,e\]
5149.

\[\frac{1+\frac{{{2}^{2}}}{2\,!}+\frac{{{2}^{4}}}{3\,!}+\frac{{{2}^{6}}}{4\,!}+.....\infty }{1+\frac{1}{2\,!}+\frac{2}{3\,!}+\frac{{{2}^{2}}}{4\,!}+....\infty }=\]

A. \[{{e}^{2}}\]
B. \[{{e}^{2}}-1\]
C. \[{{e}^{3/2}}\]
D. None of these
Answer» C. \[{{e}^{3/2}}\]
5150.

\[1+x{{\log }_{e}}a+\frac{{{x}^{2}}}{2\,!}{{({{\log }_{e}}a)}^{2}}+\frac{{{x}^{3}}}{3\,!}{{({{\log }_{e}}a)}^{3}}+...=\] [EAMCET 2002]

A. \[{{a}^{x}}\]
B. x
C. \[{{a}^{{{\log }_{a}}x}}\]
D. a
Answer» B. x