Explore topic-wise MCQs in Computational Fluid Dynamics.

This section includes 5 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.

1.

Consider a source-less 3-D steady-state diffusion problem. The general discretized equation is aP P = anb nb. What is aP?

A. a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>+a<sub>T</sub>+a<sub>B</sub>
B. a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>
C. a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>+a<sub>T</sub>
D. a<sub>P</sub>=0
Answer» B. a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>
2.

In a control volume adjacent to the boundary, the flux crossing the boundary is _______________ in the discretized equation.

A. set to some arbitrary constant
B. set to zero
C. introduced as a source term
D. introduced as a convective flux
Answer» D. introduced as a convective flux
3.

I general, for all the steady-state diffusion problems, the discretized equation can be given as aP P = anb nb-S. For a one-dimensional problem, which of these is wrong?

A. a<sub>nb</sub> =a<sub>T</sub>+a<sub>B</sub>
B. a<sub>nb</sub> =a<sub>S</sub>+ a<sub>N</sub>
C. a<sub>nb</sub> =a<sub>W</sub>+a<sub>E</sub>
D. a<sub>nb</sub> =a<sub>P</sub>+a<sub>E</sub>
Answer» E.
4.

The area in the western face of a 2-D steady-state diffusion stencil (uniform) is _______________

A. grid size in the x-direction
B. grid size in the y-direction
C. product of the grid sizes in the x and y-directions
D. ratio of the grid sizes in the x and y-directions
Answer» C. product of the grid sizes in the x and y-directions
5.

Which of these equations represent the semi-discretized equation of a 2-D steady-state diffusion problem?

A. ( int_A( Gamma A frac{ partial phi}{ partial x})dA+ int_A( Gamma A frac{ partial phi}{ partial y}) dA+ int_{ Delta V} S ,dV=0 )
B. ( int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x})dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 )
C. ( int_A( Gamma A frac{d phi}{dx})dA+ int_A( Gamma A frac{d phi}{dy})dA+ int_{ Delta V}S , dV=0 )
D. ( frac{ partial phi}{ partial t}+ int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x}) dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 )
Answer» B. ( int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x})dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 )