

MCQOPTIONS
Saved Bookmarks
This section includes 5 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
1. |
Consider a source-less 3-D steady-state diffusion problem. The general discretized equation is aP P = anb nb. What is aP? |
A. | a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>+a<sub>T</sub>+a<sub>B</sub> |
B. | a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub> |
C. | a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>+a<sub>T</sub> |
D. | a<sub>P</sub>=0 |
Answer» B. a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub> | |
2. |
In a control volume adjacent to the boundary, the flux crossing the boundary is _______________ in the discretized equation. |
A. | set to some arbitrary constant |
B. | set to zero |
C. | introduced as a source term |
D. | introduced as a convective flux |
Answer» D. introduced as a convective flux | |
3. |
I general, for all the steady-state diffusion problems, the discretized equation can be given as aP P = anb nb-S. For a one-dimensional problem, which of these is wrong? |
A. | a<sub>nb</sub> =a<sub>T</sub>+a<sub>B</sub> |
B. | a<sub>nb</sub> =a<sub>S</sub>+ a<sub>N</sub> |
C. | a<sub>nb</sub> =a<sub>W</sub>+a<sub>E</sub> |
D. | a<sub>nb</sub> =a<sub>P</sub>+a<sub>E</sub> |
Answer» E. | |
4. |
The area in the western face of a 2-D steady-state diffusion stencil (uniform) is _______________ |
A. | grid size in the x-direction |
B. | grid size in the y-direction |
C. | product of the grid sizes in the x and y-directions |
D. | ratio of the grid sizes in the x and y-directions |
Answer» C. product of the grid sizes in the x and y-directions | |
5. |
Which of these equations represent the semi-discretized equation of a 2-D steady-state diffusion problem? |
A. | ( int_A( Gamma A frac{ partial phi}{ partial x})dA+ int_A( Gamma A frac{ partial phi}{ partial y}) dA+ int_{ Delta V} S ,dV=0 ) |
B. | ( int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x})dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 ) |
C. | ( int_A( Gamma A frac{d phi}{dx})dA+ int_A( Gamma A frac{d phi}{dy})dA+ int_{ Delta V}S , dV=0 ) |
D. | ( frac{ partial phi}{ partial t}+ int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x}) dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 ) |
Answer» B. ( int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x})dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 ) | |