MCQOPTIONS
Saved Bookmarks
This section includes 7 Mcqs, each offering curated multiple-choice questions to sharpen your Linear Algebra knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
The determinant of the matrix whose eigen values are 4, 2, 3 is given by, _______ |
| A. | 9 |
| B. | 24 |
| C. | 5 |
| D. | 3 |
| Answer» C. 5 | |
| 2. |
Determine the algebraic and geometric multiplicity of the following matrix.\(\begin{bmatrix}2 & 4 & -4 \\0 & 4 & 2\\-2 & 4 & 4\end{bmatrix} \) |
| A. | Algebraic multiplicity = 1, Geometric multiplicity = 2 |
| B. | Algebraic multiplicity = 1, Geometric multiplicity = 3 |
| C. | Algebraic multiplicity = 2, Geometric multiplicity = 2 |
| D. | Algebraic multiplicity = 2, Geometric multiplicity = 1 |
| Answer» E. | |
| 3. |
Find the invertible matrix P, by using diagonalization method for the following matrix.A = \(\begin{bmatrix}2 & 0 & 0 \\1 & 2 & 1\\-1 & 0 & 1\end{bmatrix} \) |
| A. | A = \(\begin{bmatrix}-1 & -1 & 0 \\1 & 0 & -1\\-1 & 1 & 1\end{bmatrix} \) |
| B. | A = \(\begin{bmatrix}0 & -1 & 0 \\1 & 0 & -1 \\0 & 1 & 1\end{bmatrix} \) |
| C. | A = \(\begin{bmatrix}0 & 0 & 0\\1 & 1 & -1\\-1 & 0 & 1\end{bmatrix} \) |
| D. | A = \(\begin{bmatrix}1 & 0 & 0\\1 & 0 & -1\\-1 & 0 & 1\end{bmatrix} \) |
| Answer» C. A = \(\begin{bmatrix}0 & 0 & 0\\1 & 1 & -1\\-1 & 0 & 1\end{bmatrix} \) | |
| 4. |
The computation of power of a matrix becomes faster if it is diagonalizable. |
| A. | True |
| B. | False |
| Answer» B. False | |
| 5. |
If A is diagonalizable then, ____________ |
| A. | An = (PDP-1)n = PDnPn |
| B. | An = (PDP-1)n = PDnP1 |
| C. | An = (PDP-1)n = PDnP-1 |
| D. | An = (PDP-1)n = PDnP |
| Answer» D. An = (PDP-1)n = PDnP | |
| 6. |
The geometric multiplicity of λ is its multiplicity as a root of the characteristic polynomial of A, where λ be the eigen value of A. |
| A. | True |
| B. | False |
| Answer» C. | |
| 7. |
Which of the following is not a necessary condition for a matrix, say A, to be diagonalizable? |
| A. | A must have n linearly independent eigen vectors |
| B. | All the eigen values of A must be distinct |
| C. | A can be an idempotent matrix |
| D. | A must have n linearly dependent eigen vectors |
| Answer» E. | |