

MCQOPTIONS
Saved Bookmarks
This section includes 283 Mcqs, each offering curated multiple-choice questions to sharpen your Control Systems knowledge and support exam preparation. Choose a topic below to get started.
201. |
|
|||
A. | 0 and 1 | |||
B. | 0 and 2 | |||
C. | 0 and 1 | |||
D. | 1 and 2 | |||
Answer» E. | ||||
202. |
The forward transfer function of a system is 10/1 + s. The steady state error to unit step input when operated as a unity feedback system is |
A. | 10 |
B. | 0 |
C. | 1/11 |
D. | |
Answer» D. | |
203. |
For a standard feedback control loop, the sensitivity of the closed-loop transfer function T to forward path gain G and feedback path gain H are |
A. | A |
B. | B |
C. | C |
D. | D |
Answer» E. | |
204. |
For the signal flow graph shown below, the transmittance between X2 and X1 is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">rsu</td><td rowspan="2"> + </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">efh</td></tr><tr><td style="text-align: center;">1 - st</td><td style="text-align: center;">1 - fg</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">rsu</td><td rowspan="2"> + </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">efh</td></tr><tr><td style="text-align: center;">1 - fg</td><td style="text-align: center;">1 - st</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">efh</td><td rowspan="2"> + </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">rsu</td></tr><tr><td style="text-align: center;">1 - ru</td><td style="text-align: center;">1 - eh</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">rst</td><td rowspan="2"> + </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">rsu</td></tr><tr><td style="text-align: center;">1 - eh</td><td style="text-align: center;">1 - st</td></tr></table> |
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">rsu</td><td rowspan="2"> + </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">efh</td></tr><tr><td style="text-align: center;">1 - fg</td><td style="text-align: center;">1 - st</td></tr></table> | |
205. |
For the network in given figure, V |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>Cs</center></td></tr><tr><td style="text-align: center;">RCs<sup>2</sup> + RCs + 1</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>C</center></td></tr><tr><td style="text-align: center;">RCs<sup>2</sup> + RCs + 1</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>Cs</center></td></tr><tr><td style="text-align: center;">RCs<sup>2</sup> + LCs + 1</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>C</center></td></tr><tr><td style="text-align: center;">RCs<sup>2</sup> + LCs + 1</td></tr></table> |
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>C</center></td></tr><tr><td style="text-align: center;">RCs<sup>2</sup> + RCs + 1</td></tr></table> | |
206. |
For the system shown in figure, with a damping ratio for 0.7 and an undamped natural frequency n of 4 rad/sec, the value of k and a are |
A. | K = 4, a = 0.35 |
B. | K = 8, a = 0.455 |
C. | K = 16, a = 0.225 |
D. | K = 64, a = 0.9 |
Answer» D. K = 64, a = 0.9 | |
207. |
The transfer function C (s)/ R (s) of the system, whose block diagram is given below is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">1 + G<sub>1</sub>H<sub>1</sub>+G<sub>2</sub>H<sub>2</sub> - G<sub>1</sub>G<sub>2</sub>H<sub>1</sub>H<sub>2</sub></td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">1 + G<sub>1</sub>H<sub>1</sub>+G<sub>2</sub>H<sub>2</sub> + G<sub>1</sub>G<sub>2</sub>H<sub>1</sub>H<sub>2</sub></td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">1 + G<sub>1</sub>H<sub>1</sub>+G<sub>2</sub>H<sub>2</sub></td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>(1 + G<sub>2</sub>H<sub>2</sub>) + G<sub>2</sub>(1 + G<sub>1</sub>H<sub>1</sub>)</center></td></tr><tr><td style="text-align: center;">1 + G<sub>1</sub>H<sub>1</sub>+G<sub>2</sub>H<sub>2</sub> + G<sub>1</sub>G<sub>2</sub>H<sub>1</sub>H<sub>2</sub></td></tr></table> |
E. | |
Answer» C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">1 + G<sub>1</sub>H<sub>1</sub>+G<sub>2</sub>H<sub>2</sub></td></tr></table> | |
208. |
In the signal flow graph shown in the figure, the correct relationship between the various variables is |
A. | w = au + bx + cy du |
B. | w = au + bx + cy |
C. | w = au + cy + bx |
D. | w = au + cy + bx dw |
Answer» C. w = au + cy + bx | |
209. |
The transfer function for the given Bode plot is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup>{s/5( + 1)}</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 1)</center></td></tr><tr><td style="text-align: center;">s{s/5( + 1)}</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup>(s + 1){s/5( + 1)}</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K{s/5( + 1)}</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup>(s + 1)</td></tr></table> |
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 1)</center></td></tr><tr><td style="text-align: center;">s{s/5( + 1)}</td></tr></table> | |
210. |
The transfer function of a tacheometer is of the form |
A. | Ks |
B. | K/ s |
C. | K/ (s+1) |
D. | K/ [s (s+1)] |
Answer» B. K/ s | |
211. |
Non-minimum phase transfer function is defined as the transfer function |
A. | which has zeros in the right-half s-plane |
B. | which has zeros only in the left-half s-plane |
C. | which has poles in the right-half s-plane |
D. | which has poles in the left-half s-plane |
E. | A and C both |
Answer» F. | |
212. |
Signal flow graph is used to find |
A. | stability of the system |
B. | controllability of the system |
C. | transfer function of the system |
D. | poles of the system |
Answer» D. poles of the system | |
213. |
What is the gain of the system given below? |
A. | 36 |
B. | 13.25 |
C. | 11 |
D. | - 13.25 |
Answer» D. - 13.25 | |
214. |
A system has transfer function (2 s)/(2 + s) what is it s gain at 2 rad/sec? |
A. | 1 |
B. | 0 |
C. | |
D. | 2/5 |
Answer» B. 0 | |
215. |
A system has transfer function |
A. | non-minimum phase system |
B. | minimum phase system |
C. | low phase system |
D. | second order system |
Answer» B. minimum phase system | |
216. |
The block diagram shown in figure (a) is to be represented as in figure (b) for what value of H(s)? |
A. | 5s + 1 |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s + 1</center></td></tr><tr><td style="text-align: center;">s</td></tr></table> |
C. | 5(s + 1) |
D. | s(s + 5) |
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s + 1</center></td></tr><tr><td style="text-align: center;">s</td></tr></table> | |
217. |
The type denotes the number of |
A. | poles of infinity |
B. | poles of origin |
C. | zeros of infinity |
D. | zeros of origin |
Answer» C. zeros of infinity | |
218. |
If the closed loop transfer function s damping ratio is 0.5 what is the value of M? |
A. | 16 |
B. | 22 |
C. | 19 |
D. | 110 |
Answer» D. 110 | |
219. |
If the unit step response of a system is a unit impulse function, then the transfer function of such a system will be |
A. | 1 |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">s</td></tr></table> |
C. | |
D. | s |
E. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup></td></tr></table> |
Answer» D. s | |
220. |
The Transfer function of a system is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>T</center></td></tr><tr><td style="text-align: center;">K</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">K + T</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>T</center></td></tr><tr><td style="text-align: center;">T + K</td></tr></table> |
D. | K + T |
Answer» D. K + T | |
221. |
The transmittance from X to Y in the signal flow graph shown in the figure is |
A. | 4/3 |
B. | 1 |
C. | 2/3 |
D. | 1/3 |
Answer» D. 1/3 | |
222. |
The block diagram shown in fig. (a) is to be represented as in figure (b). What is the value of H (s)? |
A. | 2s + 1 |
B. | s + 1 |
C. | 2(s + 1) |
D. | s(s + 1) |
Answer» B. s + 1 | |
223. |
For the feedback system shown in the given figure, the forward path does not affect the system output. When KG is |
A. | small |
B. | negative |
C. | one |
D. | very large |
Answer» E. | |
224. |
A system with the characteristic equation s4 + 2s3 + 11s2 + 18s + 18 = 0 will have closed loop poles such that |
A. | all poles lie in the left half of the s-plane |
B. | all poles lie in the right half of the s-plane |
C. | two poles lie symmetrically on the imaginary axis of the s-plane |
D. | no pole lie on the imaginary axis of the s-plane |
Answer» D. no pole lie on the imaginary axis of the s-plane | |
225. |
Consider the following overall T.F. for a unity feedback system |
A. | 1, 2, 3 |
B. | 1, 2 |
C. | 2, 3 |
D. | s1, 3 |
Answer» E. | |
226. |
The condition of a stability for a unity feedback control system whose open loop transfer function is given by |
A. | T < 2 |
B. | T = 2 |
C. | T > 2 |
D. | 0 |
Answer» B. T = 2 | |
227. |
The transfer function V(s) /I(s) in the signal flow graph shown in the figure is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s<sup>2</sup></center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + s + 1</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s<sup>2</sup> - s - 1</center></td></tr><tr><td style="text-align: center;">s</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s</center></td></tr><tr><td style="text-align: center;">s + 1/s</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + s + 1</td></tr></table> |
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s<sup>2</sup> - s - 1</center></td></tr><tr><td style="text-align: center;">s</td></tr></table> | |
228. |
If the Intermediate variable C in the signal flow graph shown in the figure has a value 10, the input A has a value |
A. | 20 |
B. | 25 |
C. | 30 |
D. | 35 |
Answer» C. 30 | |
229. |
Consider the following signal flow graph, which have the same transfer function, would include |
A. | 1 and 2 |
B. | 2 and 3 |
C. | 2 and 4 |
D. | 1 and 4 |
Answer» D. 1 and 4 | |
230. |
Consider the following statements regarding time-domain analysis of a control system |
A. | 1 and 2 are correct |
B. | 1 and 3 are correct |
C. | 2 and 3 are correct |
D. | 1, 2 and 3 are correct |
Answer» C. 2 and 3 are correct | |
231. |
In a linear system, an input of 5 sin t produces an output of 10 cos t. The output corresponding to input 10 cos t will be equal to |
A. | + 5 sin t |
B. | 5 sin t |
C. | + 20 sin t |
D. | 20 sin t |
Answer» E. | |
232. |
Sinusoidal oscillators are |
A. | stable |
B. | unstable |
C. | marginally stable |
D. | conditionally stable |
Answer» C. marginally stable | |
233. |
Gain cross-over frequency is defined as |
A. | | G (j ) H (j ) | = 1 |
B. | | G (j ) H (j ) | = 0 |
C. | | G (j ) H (j ) | = |
D. | | G (j ) H (j ) | = 1/2 |
Answer» B. | G (j ) H (j ) | = 0 | |
234. |
A plot of open-loop poles/zeros of a unity feedback control system is shown in the given figure Its root-locus plot will be |
A. | Fig:- A |
B. | Fig:- B |
C. | Fig:- C |
D. | Fig:- D |
Answer» E. | |
235. |
Consider the following properties attributed to state model of a system |
A. | 1, 2 and 3 are correct |
B. | 1 and 2 are correct |
C. | 2 and 3 are correct |
D. | 1 and 3 are correct |
Answer» D. 1 and 3 are correct | |
236. |
A unity feedback system has OLTF, G (s) = 9/s(s + 3) |
A. | Natural frequency = 9 rad/sec. |
B. | Natural frequency = 3 rad/sec. |
C. | Damping ratio = 1/2 |
D. | Damping ratio = 1/6 |
Answer» B. Natural frequency = 3 rad/sec. | |
237. |
Which one of the four signals flow graphs shown in (A), (B), (C) and (D) represents the block diagram shown in given figure?Kindle Edition. |
A. | Fig :- A |
B. | Fig :- B |
C. | Fig :- C |
D. | Fig :- D |
Answer» B. Fig :- B | |
238. |
The unit step response of a second order linear system with zero initial states is given by |
A. | 0.6 and 10 rad/s |
B. | 0.6 and 12.5 rad/s |
C. | 0.8 and 10 rad/s |
D. | 0.8 and 12.5 rad/s |
Answer» B. 0.6 and 12.5 rad/s | |
239. |
The Laplace transformation of f (t) is |
A. | infinity |
B. | zero |
C. | one |
D. | None of these |
Answer» E. | |
240. |
A minimum-phase function has m finite poles and n finite zeros. Its phase angle as is, where n > m |
A. | 0 radians |
B. | (m n) /2 radians |
C. | (m n) /2 radians |
D. | radians |
Answer» C. (m n) /2 radians | |
241. |
The transfer function C/R of the block diagram given below is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>H<sub>2</sub></td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">G<sub>1</sub>G<sub>2</sub>(H<sub>1</sub> + H<sub>2</sub>) + 1</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">1 + G<sub>1</sub>G<sub>2</sub>H<sub>1</sub> + H<sub>2</sub></td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">1 + G<sub>2</sub>H<sub>1</sub> G<sub>1</sub>H<sub>2</sub></td></tr></table> |
Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>2</sub></center></td></tr><tr><td style="text-align: center;">G<sub>1</sub>G<sub>2</sub>(H<sub>1</sub> + H<sub>2</sub>) + 1</td></tr></table> | |
242. |
The Laplace transform of f(t) is F(s). |
A. | infinity |
B. | zero |
C. | one |
D. | None of these |
Answer» B. zero | |
243. |
A second order system is given as |
A. | gets increased |
B. | gets decreased |
C. | is unaffected |
D. | gets decreased and becomes stable |
Answer» C. is unaffected | |
244. |
Which of the following figure(s) represent valid root loci in the s-plane for positive K? Assume that the system has a transfer function with real coefficients |
A. | Fig:- A |
B. | Fig:- B |
C. | Fig:- C |
D. | Fig:- D |
Answer» B. Fig:- B | |
245. |
Signal flow graph is used to obtain the |
A. | stability of the system |
B. | transfer function of a system |
C. | controllability of a system |
D. | observability of a system |
Answer» C. controllability of a system | |
246. |
Consider the following statements regarding a first order system with a proportional (P) controller which exhibits an offset to a unit step input. |
A. | 1, 2 and 3 are correct |
B. | 1 and 2 are correct |
C. | 2 and 3 are correct |
D. | 1 and 3 are correct |
Answer» C. 2 and 3 are correct | |
247. |
The Laplace transform of the function i(t) is |
A. | 4/5 |
B. | 5/4 |
C. | 4 |
D. | 5 |
Answer» B. 5/4 | |
248. |
The pole-zero plot given below is that of a/an |
A. | integrator |
B. | PD controller |
C. | PID controller |
D. | lag-lead compensating network |
Answer» E. | |
249. |
The term reset control refers to |
A. | proportional control |
B. | integral control |
C. | derivative control |
D. | None of these |
Answer» C. derivative control | |
250. |
The characteristic equation of a unity feedback control system is given by s |
A. | 1 and 2 are correct |
B. | 3 alone is correct |
C. | 2 alone is correct |
D. | 1 and 3 are correct |
Answer» B. 3 alone is correct | |