

MCQOPTIONS
Saved Bookmarks
This section includes 283 Mcqs, each offering curated multiple-choice questions to sharpen your Control Systems knowledge and support exam preparation. Choose a topic below to get started.
101. |
An integral controller is used to improve the transient response of a first order system. If G (s) = 1/1 + s and the system is operated in closed-loop with unity feedback, what is the value of T |
A. | 0.5 |
B. | 2 |
C. | 1 |
D. | 4 |
Answer» D. 4 | |
102. |
A control system is as shown in the given figure. The maximum value of gain K for which the system is stable is |
A. | 3 |
B. | 3 |
C. | 4 |
D. | 5 |
Answer» E. | |
103. |
The open loop transfer function of a unity feedback control system is given by: |
A. | 1/ 2 |
B. | 1 |
C. | 0 |
D. | |
Answer» D. | |
104. |
Two identical first-order systems have been cascaded non-interactively. The unit step response of the systems will be |
A. | overdamped |
B. | underdamped |
C. | undamped |
D. | critically damped |
Answer» E. | |
105. |
For the given Bode plot the value of K |
A. | 25 |
B. | 50 |
C. | 15.9 |
D. | None of these |
Answer» B. 50 | |
106. |
If the closed-loop transfer function of unity negative feedback system is given by |
A. | an. an 1 |
B. | an. an 2 |
C. | an 2. an |
D. | Zero |
Answer» D. Zero | |
107. |
The position and acceleration error coefficients for the open-loop transfer function |
A. | zero and infinity |
B. | infinity and zero |
C. | K/100 and zero |
D. | infinity and K/100 |
Answer» E. | |
108. |
A unity feedback control system has a forward path transfer function equal to 42 25/s(s + 6 5) The unit step response of this system starting from rest, will have its maximum value at a time equal to |
A. | 0 sec |
B. | 0.56 sec |
C. | 5.6 sec |
D. | infinity |
Answer» E. | |
109. |
The overshoot of the system |
A. | 60% |
B. | 40% |
C. | 20% |
D. | 10% |
Answer» C. 20% | |
110. |
For the unity feedback system shown below, the steady state, when the input is |
A. | 1/4 |
B. | 0 |
C. | |
D. | 1/2 |
Answer» B. 0 | |
111. |
In the unity feedback system shown below, the value of derivative feedback constant a, which will increase the damping ratio of the system to 0.7 is |
A. | 0.152 |
B. | 0.245 |
C. | 0.353 |
D. | 0.558 |
Answer» C. 0.353 | |
112. |
The transfer function of a system is 10/1 + s. When operated as a unity feedback system, the steady state error to a unit step input will be |
A. | zero |
B. | 9 |
C. | 10 |
D. | infinity |
Answer» C. 10 | |
113. |
The value of 1 for the data given is Q. 251 |
A. | 4 rad/sec |
B. | 2 rad/sec |
C. | 5 rad/sec |
D. | 1 rad/sec |
Answer» C. 5 rad/sec | |
114. |
Consider a system shown in the given flgure with |
A. | K = 2, a = 1 |
B. | K = 2, a = 0.75 |
C. | K = 4, a = 1 |
D. | K = 4, a = 0.75 |
Answer» C. K = 4, a = 1 | |
115. |
If the open-loop transfer function of the system is |
A. | 4355 |
B. | 2436 |
C. | 9600 |
D. | 2463 |
Answer» C. 9600 | |
116. |
Consider the control system shown in the following figure and the statements given below. |
A. | 1 and 2 are correct |
B. | 2 and 4 are correct |
C. | 2, 3 and 4 are correct |
D. | 1, 2 and 3 are correct |
Answer» C. 2, 3 and 4 are correct | |
117. |
The transfer function Eo (s)/Ei (s) of the circuit is |
A. | sL/R |
B. | 1 + sL/R |
C. | R + sL/R |
D. | s/(s + R/L) |
Answer» E. | |
118. |
|
|||
A. | stable | |||
B. | unstable | |||
C. | marginally stable | |||
D. | conditionally stable | |||
Answer» E. | ||||
119. |
The transfer function of a closed-loop system is |
A. | stable |
B. | unstable |
C. | marginally stable |
D. | conditionally stable |
Answer» C. marginally stable | |
120. |
Consider the following polynomials |
A. | 1 and 3 |
B. | 2 and 3 |
C. | 1 and 2 |
D. | 1, 2 and 3 |
Answer» D. 1, 2 and 3 | |
121. |
The magnitude-frequency response of a control system is shown in the figure. The value of |
A. | 10 and 200 |
B. | 20 and 200 |
C. | 20 and 400 |
D. | 100 and 400 |
Answer» D. 100 and 400 | |
122. |
The open-loop transfer function of a unity feedback control system is: G(s) = 1/(s + 2) |
A. | 2, 2 |
B. | 2, 1 |
C. | 2, j1 |
D. | 2, j2 |
Answer» D. 2, j2 | |
123. |
Consider a closed loop system shown in figure (a) below. The root locus for it is shown in figure (b). The closed-loop transfer function for the system is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">1 + (0 5s + 1) (10s + 1)</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">(s + 2) (s + 0 1)</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">1 + K (0 5s + 1) (10s + 1)</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">K + (0 5s + 1) (10s + 1) </td></tr></table> |
Answer» E. | |
124. |
129. For what values of a does the system shown in figure have a zero steady s`tate error (i.e. Lim t e(t)) for a step input? |
A. | a = 0 |
B. | a > 0 |
C. | a 4 |
D. | For no value of a |
Answer» B. a > 0 | |
125. |
The overall transfer function of the system in figure is |
A. | G/1 GH |
B. | 2G/1 GH |
C. | GH/1 GH |
D. | 2G/1 H |
Answer» C. GH/1 GH | |
126. |
Transfer function G(s) has the pole-zero as shown in the given figure. Given that the steady state gain is 2, the transfer function G(s) will be given by |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 4</td></tr></table> |
C. | |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table> |
E. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">(s + 2)<sup>2</sup></td></tr></table> |
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table> | |
127. |
The state and output equation of a system are as under state equation: |
A. | neither state controllable nor output controllable |
B. | state controllable but not output controllable |
C. | output controllable but not state controllable |
D. | both state controllable and output controllable |
Answer» C. output controllable but not state controllable | |
128. |
Obtain the transfer function for the response curve shown below |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>40</center></td></tr><tr><td style="text-align: center;">s(1 + 0 1s)</td></tr></table> |
B. | |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">s(1 + 0 1s)</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">s(1 + 0 01s)</td></tr></table> |
E. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>20</center></td></tr><tr><td style="text-align: center;">s(1 + 0 1s)</td></tr></table> |
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">s(1 + 0 01s)</td></tr></table> | |
129. |
The feedback control system shown in the given figure represents a |
A. | Type 0 system |
B. | Type 1 system |
C. | Type 2 system |
D. | Type 3 system |
Answer» B. Type 1 system | |
130. |
The transfer function 0(s) 1(s) of the block diagram is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>3</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub></td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub></td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub>H<sub>1</sub></td></tr></table> |
D. | |
E. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>1</sub>H<sub>2</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub></td></tr></table> |
Answer» D. | |
131. |
A unity feedback system has an open loop transfer function, G(s) = K/s>sup>2. The root locus plot is |
A. | Fig:- A |
B. | Fig:- B |
C. | Fig:- C |
D. | Fig:- D |
Answer» C. Fig:- C | |
132. |
A unity feedback system has open-loop T.F. is G(s) = {25/ [s (s + 6)]}. The peak overshoot in the step-input response of the system is approximately equal to |
A. | 5% |
B. | 10% |
C. | 15% |
D. | 20% |
Answer» C. 15% | |
133. |
In the network shown in the given figure. If the voltage V at the time considered is 20 V, then dV/dt at that time will be |
A. | 1 V/s |
B. | 2 V/s |
C. | 2 V/s |
D. | Zero |
Answer» C. 2 V/s | |
134. |
The transfer function of a compensating network is of the form (1 + Ts)/ (1 + Ts). If this is a phase-lag network, the value of should be |
A. | exactly equal to 0 |
B. | between 0 and 1 |
C. | exactly equal to 1 |
D. | greater than 1. |
Answer» C. exactly equal to 1 | |
135. |
A transfer function G (s) has the pole-zero plot as shown in the given figure. Given that the steady state is 2, the transfer function G (s) will be given by |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 4</td></tr></table> |
C. | |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table> |
E. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">(s + 2)<sup>2</sup></td></tr></table> |
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table> | |
136. |
In the signal flow graph of figure the gain C/R will be |
A. | 11/9 |
B. | 22/15 |
C. | 24/23 |
D. | 44/23 |
Answer» E. | |
137. |
|
|||
A. | stable | |||
B. | unstable | |||
C. | marginally stable | |||
D. | conditionally stable | |||
Answer» B. unstable | ||||
138. |
The transfer function has a log-magnitude plot as shown below. Under the assumption that a minimum phase function, its transfer function is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">1 + s</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td></tr><tr><td style="text-align: center;">1 + s</td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td></tr><tr><td style="text-align: center;">s + 10</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> <span style=" text-decoration: overline;">2</span></center></td></tr><tr><td style="text-align: center;">s + 0.1</td></tr></table> |
Answer» E. | |
139. |
The transfer function of a closed loop system is 1/1 + sT. The input to this system is t u(t). The output would track this system, but the error would be |
A. | 0 |
B. | T |
C. | <sup>2 <br></sup> |
D. | T |
E. | T/2 |
Answer» D. T | |
140. |
The transfer function is |
A. | 0 and 1 |
B. | 1 and 2 |
C. | 2 and 3 |
D. | beyond 3 |
Answer» C. 2 and 3 | |
141. |
The root locus plot is shown below. What is the transfer function? |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">1 + s</td></tr></table> |
B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">(s + 1)<sup>2</sup></td></tr></table> |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">(s + 1)<sup>3</sup></td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">(s + 1)<sup>4</sup></td></tr></table> |
Answer» E. | |
142. |
The value of 2 for the data given in Q. 251 |
A. | 8 rad/sec |
B. | 16 rad/sec |
C. | 2 rad/sec |
D. | 4 rad/sec |
Answer» C. 2 rad/sec | |
143. |
Find the value of K for the given Bode plot |
A. | 80 |
B. | 40 |
C. | 20 |
D. | 10 |
Answer» B. 40 | |
144. |
The transfer function of transportation lag is e |
A. | sT |
B. | 1 + sT |
C. | 1 sT |
D. | 1/1 + sT |
Answer» D. 1/1 + sT | |
145. |
Consider a unit feedback control system with open-loop transfer function |
A. | zero |
B. | K |
C. | 1/ K |
D. | |
Answer» B. K | |
146. |
The transfer function for the Bode plot given below is |
A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>5</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)(1+s/100)</td></tr></table> |
B. | |
C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>6</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)<sup>2</sup>(1+s/100)</td></tr></table> |
D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>5</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)<sup>2</sup>(1+s/100)</td></tr></table> |
E. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>6</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)(1+s/100)<sup>2</sup></td></tr></table> |
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>5</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)<sup>2</sup>(1+s/100)</td></tr></table> | |
147. |
The gain factor K for the data given in Q. 251 |
A. | 16 |
B. | 32 |
C. | 8 |
D. | 64 |
Answer» C. 8 | |
148. |
The value of 3 for the data given in Q. 251 |
A. | 40 rad/sec |
B. | 20 rad/sec |
C. | 32 rad/sec |
D. | None of these |
Answer» B. 20 rad/sec | |
149. |
For a unit step input, a system with forward path transfer function G(s) = 20/s |
A. | 20 |
B. | 5 |
C. | 0.2 |
D. | zero |
Answer» E. | |
150. |
The error response of a second order system to a step input is obtained as |
A. | 0.4 |
B. | 0.5 |
C. | 0.8 |
D. | 1.0 |
Answer» D. 1.0 | |