Explore topic-wise MCQs in Control Systems.

This section includes 283 Mcqs, each offering curated multiple-choice questions to sharpen your Control Systems knowledge and support exam preparation. Choose a topic below to get started.

101.

An integral controller is used to improve the transient response of a first order system. If G (s) = 1/1 + s and the system is operated in closed-loop with unity feedback, what is the value of T

A. 0.5
B. 2
C. 1
D. 4
Answer» D. 4
102.

A control system is as shown in the given figure. The maximum value of gain K for which the system is stable is

A. 3
B. 3
C. 4
D. 5
Answer» E.
103.

The open loop transfer function of a unity feedback control system is given by:

A. 1/ 2
B. 1
C. 0
D.
Answer» D.
104.

Two identical first-order systems have been cascaded non-interactively. The unit step response of the systems will be

A. overdamped
B. underdamped
C. undamped
D. critically damped
Answer» E.
105.

For the given Bode plot the value of K

A. 25
B. 50
C. 15.9
D. None of these
Answer» B. 50
106.

If the closed-loop transfer function of unity negative feedback system is given by

A. an. an 1
B. an. an 2
C. an 2. an
D. Zero
Answer» D. Zero
107.

The position and acceleration error coefficients for the open-loop transfer function

A. zero and infinity
B. infinity and zero
C. K/100 and zero
D. infinity and K/100
Answer» E.
108.

A unity feedback control system has a forward path transfer function equal to 42 25/s(s + 6 5) The unit step response of this system starting from rest, will have its maximum value at a time equal to

A. 0 sec
B. 0.56 sec
C. 5.6 sec
D. infinity
Answer» E.
109.

The overshoot of the system

A. 60%
B. 40%
C. 20%
D. 10%
Answer» C. 20%
110.

For the unity feedback system shown below, the steady state, when the input is

A. 1/4
B. 0
C.
D. 1/2
Answer» B. 0
111.

In the unity feedback system shown below, the value of derivative feedback constant a, which will increase the damping ratio of the system to 0.7 is

A. 0.152
B. 0.245
C. 0.353
D. 0.558
Answer» C. 0.353
112.

The transfer function of a system is 10/1 + s. When operated as a unity feedback system, the steady state error to a unit step input will be

A. zero
B. 9
C. 10
D. infinity
Answer» C. 10
113.

The value of 1 for the data given is Q. 251

A. 4 rad/sec
B. 2 rad/sec
C. 5 rad/sec
D. 1 rad/sec
Answer» C. 5 rad/sec
114.

Consider a system shown in the given flgure with

A. K = 2, a = 1
B. K = 2, a = 0.75
C. K = 4, a = 1
D. K = 4, a = 0.75
Answer» C. K = 4, a = 1
115.

If the open-loop transfer function of the system is

A. 4355
B. 2436
C. 9600
D. 2463
Answer» C. 9600
116.

Consider the control system shown in the following figure and the statements given below.

A. 1 and 2 are correct
B. 2 and 4 are correct
C. 2, 3 and 4 are correct
D. 1, 2 and 3 are correct
Answer» C. 2, 3 and 4 are correct
117.

The transfer function Eo (s)/Ei (s) of the circuit is

A. sL/R
B. 1 + sL/R
C. R + sL/R
D. s/(s + R/L)
Answer» E.
118.

G (s) =
K
s(1 + sT)

A. stable
B. unstable
C. marginally stable
D. conditionally stable
Answer» E.
119.

The transfer function of a closed-loop system is

A. stable
B. unstable
C. marginally stable
D. conditionally stable
Answer» C. marginally stable
120.

Consider the following polynomials

A. 1 and 3
B. 2 and 3
C. 1 and 2
D. 1, 2 and 3
Answer» D. 1, 2 and 3
121.

The magnitude-frequency response of a control system is shown in the figure. The value of

A. 10 and 200
B. 20 and 200
C. 20 and 400
D. 100 and 400
Answer» D. 100 and 400
122.

The open-loop transfer function of a unity feedback control system is: G(s) = 1/(s + 2)

A. 2, 2
B. 2, 1
C. 2, j1
D. 2, j2
Answer» D. 2, j2
123.

Consider a closed loop system shown in figure (a) below. The root locus for it is shown in figure (b). The closed-loop transfer function for the system is

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">1 + (0 5s + 1) (10s + 1)</td></tr></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">(s + 2) (s + 0 1)</td></tr></table>
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">1 + K (0 5s + 1) (10s + 1)</td></tr></table>
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">K + (0 5s + 1) (10s + 1) </td></tr></table>
Answer» E.
124.

129. For what values of a does the system shown in figure have a zero steady s`tate error (i.e. Lim t e(t)) for a step input?

A. a = 0
B. a > 0
C. a 4
D. For no value of a
Answer» B. a > 0
125.

The overall transfer function of the system in figure is

A. G/1 GH
B. 2G/1 GH
C. GH/1 GH
D. 2G/1 H
Answer» C. GH/1 GH
126.

Transfer function G(s) has the pole-zero as shown in the given figure. Given that the steady state gain is 2, the transfer function G(s) will be given by

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 4</td></tr></table>
C.
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table>
E. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">(s + 2)<sup>2</sup></td></tr></table>
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table>
127.

The state and output equation of a system are as under state equation:

A. neither state controllable nor output controllable
B. state controllable but not output controllable
C. output controllable but not state controllable
D. both state controllable and output controllable
Answer» C. output controllable but not state controllable
128.

Obtain the transfer function for the response curve shown below

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>40</center></td></tr><tr><td style="text-align: center;">s(1 + 0 1s)</td></tr></table>
B.
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">s(1 + 0 1s)</td></tr></table>
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">s(1 + 0 01s)</td></tr></table>
E. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>20</center></td></tr><tr><td style="text-align: center;">s(1 + 0 1s)</td></tr></table>
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">s(1 + 0 01s)</td></tr></table>
129.

The feedback control system shown in the given figure represents a

A. Type 0 system
B. Type 1 system
C. Type 2 system
D. Type 3 system
Answer» B. Type 1 system
130.

The transfer function 0(s) 1(s) of the block diagram is

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>1</sub>G<sub>3</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub></td></tr></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub></td></tr></table>
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub>H<sub>1</sub></td></tr></table>
D.
E. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>2</sub>G<sub>4</sub></center></td></tr><tr><td style="text-align: center;">1 + H<sub>1</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub> + H<sub>1</sub>H<sub>2</sub>G<sub>2</sub>G<sub>3</sub>G<sub>4</sub></td></tr></table>
Answer» D.
131.

A unity feedback system has an open loop transfer function, G(s) = K/s>sup>2. The root locus plot is

A. Fig:- A
B. Fig:- B
C. Fig:- C
D. Fig:- D
Answer» C. Fig:- C
132.

A unity feedback system has open-loop T.F. is G(s) = {25/ [s (s + 6)]}. The peak overshoot in the step-input response of the system is approximately equal to

A. 5%
B. 10%
C. 15%
D. 20%
Answer» C. 15%
133.

In the network shown in the given figure. If the voltage V at the time considered is 20 V, then dV/dt at that time will be

A. 1 V/s
B. 2 V/s
C. 2 V/s
D. Zero
Answer» C. 2 V/s
134.

The transfer function of a compensating network is of the form (1 + Ts)/ (1 + Ts). If this is a phase-lag network, the value of should be

A. exactly equal to 0
B. between 0 and 1
C. exactly equal to 1
D. greater than 1.
Answer» C. exactly equal to 1
135.

A transfer function G (s) has the pole-zero plot as shown in the given figure. Given that the steady state is 2, the transfer function G (s) will be given by

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 4</td></tr></table>
C.
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table>
E. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">(s + 2)<sup>2</sup></td></tr></table>
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10(s + 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 4s + 5</td></tr></table>
136.

In the signal flow graph of figure the gain C/R will be

A. 11/9
B. 22/15
C. 24/23
D. 44/23
Answer» E.
137.

G (s) =
1 s
s(s + 2)

A. stable
B. unstable
C. marginally stable
D. conditionally stable
Answer» B. unstable
138.

The transfer function has a log-magnitude plot as shown below. Under the assumption that a minimum phase function, its transfer function is

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">1 + s</td></tr></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td></tr><tr><td style="text-align: center;">1 + s</td></tr></table>
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td></tr><tr><td style="text-align: center;">s + 10</td></tr></table>
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> <span style=" text-decoration: overline;">2</span></center></td></tr><tr><td style="text-align: center;">s + 0.1</td></tr></table>
Answer» E.
139.

The transfer function of a closed loop system is 1/1 + sT. The input to this system is t u(t). The output would track this system, but the error would be

A. 0
B. T
C. <sup>2 <br></sup>
D. T
E. T/2
Answer» D. T
140.

The transfer function is

A. 0 and 1
B. 1 and 2
C. 2 and 3
D. beyond 3
Answer» C. 2 and 3
141.

The root locus plot is shown below. What is the transfer function?

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">1 + s</td></tr></table>
B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">(s + 1)<sup>2</sup></td></tr></table>
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">(s + 1)<sup>3</sup></td></tr></table>
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4</center></td></tr><tr><td style="text-align: center;">(s + 1)<sup>4</sup></td></tr></table>
Answer» E.
142.

The value of 2 for the data given in Q. 251

A. 8 rad/sec
B. 16 rad/sec
C. 2 rad/sec
D. 4 rad/sec
Answer» C. 2 rad/sec
143.

Find the value of K for the given Bode plot

A. 80
B. 40
C. 20
D. 10
Answer» B. 40
144.

The transfer function of transportation lag is e

A. sT
B. 1 + sT
C. 1 sT
D. 1/1 + sT
Answer» D. 1/1 + sT
145.

Consider a unit feedback control system with open-loop transfer function

A. zero
B. K
C. 1/ K
D.
Answer» B. K
146.

The transfer function for the Bode plot given below is

A. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>5</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)(1+s/100)</td></tr></table>
B.
C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>6</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)<sup>2</sup>(1+s/100)</td></tr></table>
D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>5</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)<sup>2</sup>(1+s/100)</td></tr></table>
E. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>6</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)(1+s/100)<sup>2</sup></td></tr></table>
Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10<sup>5</sup></center></td></tr><tr><td style="text-align: center;">(1+s/5)(1+s/40)<sup>2</sup>(1+s/100)</td></tr></table>
147.

The gain factor K for the data given in Q. 251

A. 16
B. 32
C. 8
D. 64
Answer» C. 8
148.

The value of 3 for the data given in Q. 251

A. 40 rad/sec
B. 20 rad/sec
C. 32 rad/sec
D. None of these
Answer» B. 20 rad/sec
149.

For a unit step input, a system with forward path transfer function G(s) = 20/s

A. 20
B. 5
C. 0.2
D. zero
Answer» E.
150.

The error response of a second order system to a step input is obtained as

A. 0.4
B. 0.5
C. 0.8
D. 1.0
Answer» D. 1.0