Explore topic-wise MCQs in Microwave Engineering.

This section includes 18 Mcqs, each offering curated multiple-choice questions to sharpen your Microwave Engineering knowledge and support exam preparation. Choose a topic below to get started.

1.

The cutoff frequencies of the first two propagating modes of a Teflon on a filled circular waveguide with a=0.5 with ∈r=2.08 is:

A. 12.19 GHz, 15.92 GHz
B. 10 GHz, 12 GHz
C. 12 GHz, 15 GHz
D. 15 GHz, 12 GHz
Answer» B. 10 GHz, 12 GHz
2.

If β is 0.3 for a circular wave guide operating in TM12 mode with P21=5.315, with the radius of the circular waveguide being equal to 25 mm, then the intrinsic impedance of the wave is:

A. 0.55 Ω
B. 0.4 Ω
C. 0.3 Ω
D. 1.2 Ω
Answer» B. 0.4 Ω
3.

For TM01 mode of propagation in a circular waveguide with P01=2.405, with the inner diameter of the circular waveguide being equal to 25 mm. What is the cut off frequency for this mode of propagation?

A. 2.8 GHz
B. 6 GHz
C. 3.06 GHz
D. 4 GHz.
Answer» D. 4 GHz.
4.

In a circular waveguide, if the propagation is in TE21 mode with P21=3.054, with a diameter of 60 mm, then the cutoff frequency for the mode is:

A. 5.6 GHz
B. 6.4 GHz
C. 3.5 GHz
D. 4.8 GHz
Answer» E.
5.

What is the cutoff frequency for TE₁₁ mode in a circular waveguide of radius 2 cm with P’₁₁= 1.841?

A. 5.5 GHz
B. 4.3 GHz
C. 7.7 GHz
D. 8.1 GHz
Answer» C. 7.7 GHz
6.

Bessel’s differential equation for a circular waveguide is:

A. ρ2(d2R/ dρ2) + ρ(dR/dρ) + (ρ2kC2– n2) R=0
B. n2(d2R/ dρ2) + n(dR/dρ) + (ρ2kC2– n2) R=0
C. d2R/ dρ2 + dR/dρ + (ρ2kC2– n2) R=0
D. None of the mentioned
Answer» B. n2(d2R/ dρ2) + n(dR/dρ) + (ρ2kC2– n2) R=0
7.

In TE mode of a circular waveguide, EZ=0. The wave equation is:

A. ∇2HZ+k2HZ=0
B. ∇2HZ-k2HZ=0
C. ∇2HZ-HZ=0
D. ∇2HZ+HZ=0
Answer» B. ∇2HZ-k2HZ=0
8.

FOR_TM01_MODE_OF_PROPAGATION_IN_A_CIRCULAR_WAVEGUIDE_WITH_P01=2.405,_WITH_THE_INNER_DIAMETER_OF_THE_CIRCULAR_WAVEGUIDE_BEING_EQUAL_TO_25_MM._WHAT_IS_THE_CUT_OFF_FREQUENCY_FOR_THIS_MODE_OF_PROPAGATION??$

A. 2.8 GHz
B. 6 GHz
C. 3.06 GHz
D. 4 GHz.
Answer» D. 4 GHz.
9.

The cutoff frequencies of the first two propagating modes of a Teflon on a filled circular waveguide with a=0.5 with ‚ààr=2.08 is:$#

A. 12.19 GHz, 15.92 GHz
B. 10 GHz, 12 GHz
C. 12 GHz, 15 GHz
D. 15 GHz, 12 GHz
Answer» B. 10 GHz, 12 GHz
10.

If_β_is_0.3_for_a_circular_wave_guide_operating_in_TM12_mode_with_P21=5.315,_with_the_radius_of_the_circular_waveguide_being_equal_to_25_mm,_then_the_intrinsic_impedance_of_the_wave_is:$#

A. 0.55 Ω
B. 0.4 Ω
C. 0.3 Ω
D. 1.2 Ω
Answer» B. 0.4 ‚âà√≠¬¨¬©
11.

In TM mode, what is the first propagating mode?

A. TM01 mode
B. TM11 mode
C. TM12 mode
D. TM10 mode
Answer» B. TM11 mode
12.

For TM mode. The wave equation in cylindrical co ordinates is:

A. (∂<sup>2</sup>/∂ρ<sup>2</sup>+1/ρ ∂/∂ρ + 1/ρ<sup>2</sup> (∂<sup>2</sup>/∂∅<sup>2</sup> + kc<sup>2</sup>) =0
B. ∂<sup>2</sup>E<sup>2</sup>/∂ρ<sup>2</sup> + 1/ρ ( ∂E/∂ρ)=0
C. ∂<sup>2</sup>E<sup>2</sup>/∂ρ<sup>2</sup> + 1/ρ<sup>2</sup> (∂<sup>2</sup>E<sup>2</sup>/∂∅<sup>2</sup> ) = 0
D. None of the mentioned
Answer» B. ‚Äö√Ñ√∂‚àö‚Ć‚àö√°<sup>2</sup>E<sup>2</sup>/‚Äö√Ñ√∂‚àö‚Ć‚àö√°‚âà√¨‚àö√ñ<sup>2</sup> + 1/‚âà√¨‚àö√ñ ( ‚Äö√Ñ√∂‚àö‚Ć‚àö√°E/‚Äö√Ñ√∂‚àö‚Ć‚àö√°‚âà√¨‚àö√ñ)=0
13.

For a circular waveguide in TM11 mode of propagation with inner radius of 30mm, and the phase constant being equal to 0.3, then the wave impedance is equal to:

A. 0.16 Ω
B. 0.15 Ω
C. 0.5 Ω
D. 0.4 Ω
Answer» B. 0.15 ‚âà√≠¬¨¬©
14.

In a circular waveguide, if the propagation is in TE21 mode with P21=3.054, with a diameter of 60 mm, then the cutoff frequency for the mode is:

A. 5.6 GHz
B. 6.4 GHz
C. 3.5 GHz
D. 4.8 GHz
Answer» E.
15.

What is the cutoff frequency for TE₁₁ mode in a circular waveguide of radius 2 cm with P’₁₁= 1.841?$

A. 5.5 GHz
B. 4.3 GHz
C. 7.7 GHz
D. 8.1 GHz
Answer» C. 7.7 GHz
16.

The lowest mode of TE mode propagation in a circular waveguide is:

A. TE10 mode
B. TE00 mode
C. TE01 mode
D. TE11 mode
Answer» D. TE11 mode
17.

Bessel’s differential equation for a circular waveguide is:$

A. ρ<sup>2</sup>(d<sup>2</sup>R/ dρ<sup>2</sup>) + ρ(dR/dρ) + (ρ<sup>2</sup>kC<sup>2</sup>– n<sup>2</sup>) R=0
B. n<sup>2</sup>(d<sup>2</sup>R/ dρ<sup>2</sup>) + n(dR/dρ) + (ρ<sup>2</sup>kC<sup>2</sup>– n<sup>2</sup>) R=0
C. d<sup>2</sup>R/ dρ<sup>2</sup> + dR/dρ + (ρ<sup>2</sup>kC<sup>2</sup>– n<sup>2</sup>) R=0
D. None of the mentioned
Answer» B. n<sup>2</sup>(d<sup>2</sup>R/ d‚âà√¨‚àö√ñ<sup>2</sup>) + n(dR/d‚âà√¨‚àö√ñ) + (‚âà√¨‚àö√ñ<sup>2</sup>kC<sup>2</sup>‚Äö√Ñ√∂‚àö√ë‚àö¬® n<sup>2</sup>) R=0
18.

In TE mode of a circular waveguide, EZ=0. The wave equation is:

A. ‚àá<sup>2</sup>H<sub>Z</sub>+k<sup>2</sup>H<sub>Z</sub>=0
B. ‚àá<sup>2</sup>H<sub>Z</sub>-k<sup>2</sup>H<sub>Z</sub>=0
C. ‚àá<sup>2</sup>H<sub>Z</sub>-H<sub>Z</sub>=0
D. ‚àá<sup>2</sup>H<sub>Z</sub>+H<sub>Z</sub>=0
Answer» B. ‚Äö√Ñ√∂‚àö‚Ć‚àö¬∞<sup>2</sup>H<sub>Z</sub>-k<sup>2</sup>H<sub>Z</sub>=0