

MCQOPTIONS
Saved Bookmarks
This section includes 1187 Mcqs, each offering curated multiple-choice questions to sharpen your NEET knowledge and support exam preparation. Choose a topic below to get started.
401. |
On the basis of the information available from the reaction \[\frac{4}{3}Al+{{O}_{2}}\to \frac{2}{3}A{{l}_{2}}{{O}_{3}},\Delta G\] \[=-827\text{ }kJ\text{ }mo{{l}^{-1}}\] of \[{{O}_{2}}\] the minimum e.m.f required to carry out an electrolysis of \[A{{l}_{2}}{{O}_{3}}\] is \[\left( F=96500C\text{ }mo{{l}^{-1}} \right)\] |
A. | 8.56 V |
B. | 2.14 V |
C. | 4.28 V |
D. | 6.42 V |
Answer» C. 4.28 V | |
402. |
For a cell reaction involving two electron change, the standard EMF of the cell is 0.295 V at \[2{}^\circ C\]. The equilibrium constant of the reaction at \[25{}^\circ C\] will be: |
A. | \[29.5\times {{10}^{-2}}\] |
B. | 10 |
C. | \[1\times {{10}^{10}}\] |
D. | \[2.95\times {{10}^{-10}}\] |
Answer» D. \[2.95\times {{10}^{-10}}\] | |
403. |
In a cell that utilises the reaction \[Zn(s)+2{{H}^{+}}(aq)\to Z{{n}^{2+}}(aq)+{{H}_{2}}(g)\] addition of \[{{H}_{2}}S{{O}_{4}}\] to cathode compartment, will |
A. | increase the E and shift equilibrium to the right |
B. | lower the E and shift equilibrium to the right |
C. | lower the E and shift equlibrium to the left |
D. | increase the E and shift equilibrium to the left |
Answer» B. lower the E and shift equilibrium to the right | |
404. |
For the reduction of silver ions with copper metal, the standard cell potential was found to be \[+0.46\text{ }V\] at \[25{}^\circ C.\] The value of standard Gibbs energy, \[\Delta G{}^\circ \] will be \[\left( F=96500C\text{ }mo{{l}^{-1}} \right)\] |
A. | \[-89.0\,kJ\] |
B. | \[-89.0\,J\] |
C. | \[-44.5\,kJ\] |
D. | \[-98.0\,kJ\] |
Answer» B. \[-89.0\,J\] | |
405. |
The standard electrode potential \[\left( E{}^\circ \right)\] for \[OC{{l}^{-}}/C{{l}^{-}}\] and \[C{{l}^{-}}/\frac{1}{2}C{{l}_{2}}\] respectively are 0.94 V and \[-1.36\text{ }V\]. The \[E{}^\circ \] value for \[OC{{l}^{-}}/\frac{1}{2}C{{l}_{2}}\] will be |
A. | \[-0.42\,\,V\] |
B. | \[-2.20\,\,V\] |
C. | 0.52 V |
D. | 1.04 V |
Answer» B. \[-2.20\,\,V\] | |
406. |
What is the e.m.f for the given cell?\[Cr|C{{r}^{3+}}(1.0M)||C{{o}^{2+}}(1.0M)|Co\]\[(E{}^\circ for\text{ }C{{r}^{3+}}/Cr=-0.74\] volt and \[E{}^\circ \] for \[C{{o}^{2+}}/Co=-0.28\] volt) |
A. | \[-0.46\]volt |
B. | \[-1.02\,~volt\] |
C. | \[+0.46\] volt |
D. | 1.66 volt |
Answer» D. 1.66 volt | |
407. |
Small quantities of solutions of compounds TX, TY and TZ are put into separate test tubes containing X, Y and Z solution. TX does not react with any of these. TY reacts with both X and Z. TZ reacts with X. The decreasing order of state of oxidation of the anions \[{{X}^{-}},{{Y}^{-}},{{Z}^{-}}\]is |
A. | \[{{Y}^{-}},{{Z}^{-}},{{X}^{-}}\] |
B. | \[{{Z}^{-}},{{X}^{-}},{{Y}^{-}}\] |
C. | \[{{Y}^{-}},{{X}^{-}},{{Z}^{-}}\] |
D. | \[{{X}^{-}},{{Z}^{-}},{{Y}^{-}}\] |
Answer» B. \[{{Z}^{-}},{{X}^{-}},{{Y}^{-}}\] | |
408. |
Zn gives \[{{H}_{2}}\] gas with \[{{H}_{2}}S{{O}_{4}}\] and \[HCl\] but not with \[HN{{O}_{3}}\] because |
A. | Zn acts as oxidizing when reacts with \[HN{{O}_{3}}\]. |
B. | \[HN{{O}_{3}}\] is weaker acid than \[{{H}_{2}}S{{O}_{4}}\] and \[HCl\]. |
C. | In electrochemical series Zn is above hydrogen. |
D. | \[N{{O}_{3}}^{-}\] is reduced in preference to hydronium. |
Answer» E. | |
409. |
The EMF of the cell \[Tl/T{{l}^{+}}(0.001M)||C{{u}^{2+}}(0.01M)/Cu\,is\,0.83.\] The cell EMF can be increased by |
A. | Increasing the concentration of \[T{{l}^{+}}\] ions. |
B. | Increasing the concentration of\[C{{u}^{2+}}\] ions. |
C. | Increasing the concentration of \[T{{l}^{+}}\] and \[C{{u}^{2+}}\]ions. |
D. | None of these |
Answer» C. Increasing the concentration of \[T{{l}^{+}}\] and \[C{{u}^{2+}}\]ions. | |
410. |
The oxidation potential of a hydrogen electrode at pH = 10 and \[{{P}_{H}}_{_{2}}=1\,atm\] is |
A. | \[-0.59V\] |
B. | \[0.00\text{ }V\] |
C. | \[+0.59V\] |
D. | 0.059 V |
Answer» D. 0.059 V | |
411. |
Given: \[E{{{}^\circ }_{\frac{1}{2}C{{l}_{2}}/C{{l}^{-}}}}=1.36V,\text{ }E{{{}^\circ }_{C{{r}^{3+}}/Cr}}~=-0.74V,\] \[E{{{}^\circ }_{C{{r}_{2}}O_{7}^{2-}/C{{l}^{-}}}}=1.33V,\text{ }E{{{}^\circ }_{MnO_{4}^{-}/M{{n}^{2+}}}}~=1.51\,V\] The correct order of reducing power of the species \[\left( Cr,C{{r}^{3+}},\text{ }M{{n}^{2+}}and\text{ }C{{l}^{-}} \right)\] will be: |
A. | \[M{{n}^{2+}}<C{{l}^{-}}<C{{r}^{3+}}<Cr\] |
B. | \[M{{n}^{2+}}<C{{r}^{3+}}<C{{l}^{-}}<Cr\] |
C. | \[C{{r}^{3+}}<C{{l}^{-}}<M{{n}^{2+}}<Cr\] |
D. | \[C{{r}^{3+}}<C{{l}^{-}}<Cr<M{{n}^{2+}}\] |
Answer» B. \[M{{n}^{2+}}<C{{r}^{3+}}<C{{l}^{-}}<Cr\] | |
412. |
Given\[F{{e}^{3+}}(aq)+{{e}^{-}}\to F{{e}^{2+}}(aq);E{}^\circ =+0.77V\]\[A{{l}^{3+}}(aq)+3{{e}^{-}}\to Al(s);E{}^\circ =-1.66V\]\[B{{r}_{2}}(aq)+2{{e}^{-}}\to 2B{{r}^{-}};E{}^\circ =+1.09V\]Considering the electrode potentials, which of the following represents the correct order of reducing power? |
A. | \[F{{e}^{2+}}<Al<B{{r}^{-}}\] |
B. | \[B{{r}^{-}}<F{{e}^{2+}}<Al\] |
C. | \[Al<B{{r}^{-}}<F{{e}^{2+}}\] |
D. | \[Al<F{{e}^{2+}}<B{{r}^{-}}\] |
Answer» E. | |
413. |
During the charging of lead storage battery, the reaction at anode is represented by: |
A. | \[P{{b}^{2+}}+SO_{4}^{2-}\xrightarrow{{}}PbS{{O}_{4}}\] |
B. | \[PbS{{O}_{4}}+2{{H}_{2}}O\xrightarrow{{}}Pb{{O}_{2}}+SO_{4}^{2-}\]\[+4{{H}^{+}}+2{{e}^{-}}\] |
C. | \[Pb\xrightarrow{{}}P{{b}^{2+}}+2{{e}^{-}}\] |
D. | \[P{{b}^{2+}}+2{{e}^{-}}\xrightarrow{{}}Pb\] |
Answer» C. \[Pb\xrightarrow{{}}P{{b}^{2+}}+2{{e}^{-}}\] | |
414. |
The standard reduction potentials at 298K for the following half reactions are given against each\[Z{{n}^{2+}}(aq)+2{{e}^{-}}\rightleftharpoons Zn(s);\,\,-0.762\,V\]\[C{{r}^{3+}}(aq)+3{{e}^{-}}~\rightleftharpoons Cr(s);\,\,-0.740\,V\]\[2{{H}^{+}}(aq)+2{{e}^{-}}\rightleftharpoons {{H}_{2}}(g);\,\,\,0.00\,V\]\[F{{e}^{3+}}(aq)+2{{e}^{-}}\rightleftharpoons F{{e}^{2+}}(aq);\,\,0.770\,V\]Which is the strongest reducing agent? |
A. | \[Zn\left( s \right)\] |
B. | \[Cr\left( s \right)\] |
C. | \[{{H}_{2}}\left( g \right)\] |
D. | \[F{{e}^{3+}}(aq)\] |
Answer» B. \[Cr\left( s \right)\] | |
415. |
On passing a current of 1.0 ampere for 16 min and 5 sec through one litre solution of\[CuC{{l}_{2}}\], all copper of the solution was deposited at cathode. The strength of \[CuC{{l}_{2}}\] solution was (Molar mass of Cu= 63.5; Faraday constant\[=96500Cmo{{l}^{-1}}\]) |
A. | 0.01 N |
B. | 0.01 M |
C. | 0.02 M |
D. | 0.2 N |
Answer» B. 0.01 M | |
416. |
Given the ionic conductance of , \[{{K}^{+}}\], and \[N{{a}^{+}}\] are 74, 50, and \[73\text{ }c{{m}^{2}}oh{{m}^{-1}}\] \[e{{q}^{-1}}\] respectively. The equivalent conductance at infinite dilution of the salt is |
A. | \[197\text{ }c{{m}^{2}}oh{{m}^{-1}}e{{q}^{-1}}\] |
B. | \[172\,c{{m}^{2}}oh{{m}^{-1}}e{{q}^{-1}}\] |
C. | \[135.5\,c{{m}^{2}}oh{{m}^{-1}}e{{q}^{-1}}\] |
D. | \[160.5\,c{{m}^{2}}oh{{m}^{-1}}e{{q}^{-1}}\] |
Answer» D. \[160.5\,c{{m}^{2}}oh{{m}^{-1}}e{{q}^{-1}}\] | |
417. |
In electrolytic reduction of a nitroarene with 50% current efficiency 20.50 g of the compound is reduced by \[2\times 96500\text{ }C\] of electric charge. The molar mass of the compound is |
A. | 123.0 g |
B. | 61.5 g |
C. | 10.2 g |
D. | 20.5 g |
Answer» B. 61.5 g | |
418. |
Conductance of \[0.1\text{ }M\text{ }KCl\] (conductivity = \[X\,\,Oh{{m}^{-1}}c{{m}^{-1}}\] filled in a conductivity cell is \[Y\,\,Oh{{m}^{-1}}\]. If the conductance of \[0.1\text{ }M\text{ }NaOH\] filled in the same cell is \[Z\,\,Oh{{m}^{-1}},\] the molar conductance of \[NaOH\] will be |
A. | \[{{10}^{3}}\frac{XZ}{Y}\] |
B. | \[{{10}^{4}}\frac{XZ}{Y}\] |
C. | \[10\frac{XZ}{Y}\] |
D. | \[0.1\frac{XZ}{Y}\] |
Answer» C. \[10\frac{XZ}{Y}\] | |
419. |
The equivalent conductance at infinite dilution of a weak acid such as HF |
A. | can be determined by extrapolation of measurements of dilute solutions of \[HCl,HBr\] and HI |
B. | can be determined by measurement of very dilute HF solutions |
C. | can be determined from measurements of dilute solutions of \[NaF,NaCl\] and \[HCl\] |
D. | is an undefined quantity |
Answer» D. is an undefined quantity | |
420. |
The specific conductivity of \[N/10\text{ }KCl\] solution at \[20{}^\circ C\] is \[0.212\text{ }oh{{m}^{-1}}c{{m}^{-1}}\] and the resistance of the cell containing this solution at \[20{}^\circ C\] is 55 ohm. The cell constant is |
A. | \[4.616\,c{{m}^{-1}}\] |
B. | \[11.66\,\,c{{m}^{-1}}\] |
C. | \[2.173\,c{{m}^{-1}}\] |
D. | \[3.324\,c{{m}^{-1}}\] |
Answer» C. \[2.173\,c{{m}^{-1}}\] | |
421. |
The highest electrical conductivity of the following aqueous solutions is of |
A. | 0.1 M difluoroacetic acid |
B. | 0.1 M fluoroacetic acid |
C. | 0.1 M chloroacetic acid |
D. | 0.1 M acetic acid |
Answer» B. 0.1 M fluoroacetic acid | |
422. |
If x is the specific resistance of the solution and N is the normality of the solution, the equivalent conductivity of the solution is given by |
A. | \[\frac{1000x}{N}\] |
B. | \[\frac{1000x}{N}\] |
C. | \[\frac{1000N}{x}\] |
D. | \[\frac{Nx}{1000}\] |
Answer» C. \[\frac{1000N}{x}\] | |
423. |
For an electrolyte solution of \[0.05\text{ }mol\text{ }{{L}^{-1}}\] the conductivity has been found to be \[0.0110\text{ }S\text{ }c{{m}^{-1}}\] The molar conductivity is |
A. | \[0.055\text{ }S\text{ }c{{m}^{2}}mo{{l}^{-1}}\] |
B. | \[550\text{ }S\text{ }c{{m}^{2}}mo{{l}^{-1}}\] |
C. | \[0.22\text{ }S\text{ }c{{m}^{2}}mo{{l}^{-1}}\] |
D. | \[220\text{ }S\text{ }c{{m}^{2}}mo{{l}^{-1}}\] |
Answer» E. | |
424. |
For the electrochemical cell \[Pt(s)\underset{1\text{ }atm}{\mathop{|{{H}_{2}}(g)|}}\,{{H}^{+}}(1M)|,Cu(s)\] which one of the following statements is true? |
A. | \[{{H}^{+}}\] ions are formed at anode and Cu is deposited at cathode. |
B. | \[{{H}_{2}}\] is liberated at cathode and Cu is deposited at anode. |
C. | Oxidation occurs at cathode. |
D. | Reduction occurs at anode. |
Answer» B. \[{{H}_{2}}\] is liberated at cathode and Cu is deposited at anode. | |
425. |
On passing current through two cells, connected in series containing solution of \[AgN{{O}_{3}}\] and \[CuS{{O}_{4}}\], 0.18 g of Ag is deposited. The amount of the Cu deposited is: |
A. | 0.529 g |
B. | 10.623 g |
C. | 0.0529 g |
D. | 1.2708 g |
Answer» D. 1.2708 g | |
426. |
When electric current is passed through acidified water, 112 mL of hydrogen gas at STP collected at the cathode in 965 seconds. The current passed in amperes is |
A. | 1.0 |
B. | 0.5 |
C. | 0.1 |
D. | 2 |
Answer» B. 0.5 | |
427. |
Aluminium oxide may be electrolysed at \[1000{}^\circ C\] to furnish aluminium metal (At. Mass = 27 amu; 1 Faraday = 96,500 Coulombs). The cathode reaction is - \[A{{l}^{3+}}+3{{e}^{-}}\to Al\] To prepare 5.12 kg of aluminium metal by this method we require electricity of |
A. | \[5.49\times {{10}^{1}}C\] |
B. | \[5.49\times {{10}^{4}}C\] |
C. | \[1.83\times {{10}^{7}}C\] |
D. | \[5.49\times {{10}^{7}}C\] |
Answer» E. | |
428. |
The ionic conductivity of \[B{{a}^{2+}}\] and \[C{{l}^{-}}\] at infinite dilution are 127 and 76 \[oh{{m}^{-1}}\] \[c{{m}^{2}}e{{q}^{-1}}\] respectively. The equivalent conductivity of \[BaC{{l}_{2}}\] at infinity dilution (in \[oh{{m}^{-1}}\,C{{m}^{2}}e{{q}^{-1}}\]) would be: |
A. | 203 |
B. | 279 |
C. | 101.5 |
D. | 139.5 |
Answer» C. 101.5 | |
429. |
When a concentrated solution of an electrolyte is diluted |
A. | its specific conductance increases. |
B. | its equivalent conductivity decreases. |
C. | its specific conductivity decreases and equivalent conductivity increases. |
D. | both specific and equivalent conductivity increase. |
Answer» D. both specific and equivalent conductivity increase. | |
430. |
If 0.01 M solution of an electrolyte has a resistance of 40 ohms in a cell having a cell constant of \[0.4\text{ }c{{m}^{-1}},\] then its molar conductance in \[oh{{m}^{-1}}c{{m}^{2}}mo{{l}^{-1}}\] is |
A. | \[{{10}^{2}}\] |
B. | \[{{10}^{4}}\] |
C. | 10 |
D. | \[{{10}^{3}}\] |
Answer» E. | |
431. |
Based on the cell notation for a spontaneous reaction, at the anode: \[Ag\left( s \right)\left| AgCl\left( s \right) \right|C{{l}^{-}}\left( aq \right)\left| \left| B{{r}^{-}}\left( aq \right) \right|B{{r}_{2}}\left( l \right) \right|C\left( s \right)\] |
A. | \[AgCl\] gets reduced |
B. | Ag gets oxidized |
C. | \[B{{r}^{-}}\] gets oxidized |
D. | \[B{{r}_{2}}\] gets reduced |
Answer» C. \[B{{r}^{-}}\] gets oxidized | |
432. |
Given that: \[E{{{}^\circ }_{A{{g}^{+}}/Ag}}~=0.80V\] and \[[A{{g}^{+}}]={{10}^{-3}}M;\] \[E{{{}^\circ }_{Hg_{2}^{2+}/Hg}}=0.785V\] and \[[Hg_{2}^{2+}]={{10}^{-1}}M\] which is true for the cell reaction \[2Hg(l)+2A{{g}^{+}}(aq)\to 2Ag(s)+Hg_{2}^{2+}(aq)?\] |
A. | The forward reaction is spontaneous |
B. | The backward reaction is spontaneous |
C. | \[{{E}_{cell}}=0.163\,\nu \] |
D. | \[{{E}_{cell}}=1.585\,\nu \] |
Answer» C. \[{{E}_{cell}}=0.163\,\nu \] | |
433. |
The standard EMF for the cell reaction, \[Zn+C{{u}^{2+}}\xrightarrow{{}}Cu+Z{{n}^{2+}}\] is 1.1 volt at \[25{}^\circ C.\] The EMF for the cell reaction, when \[0.1\,MC{{u}^{2+}}\] and \[0.1MZ{{n}^{2+}}\] solutions are used, at \[25{}^\circ C\] is |
A. | 1.10 V |
B. | 0.10 V |
C. | \[-1.10\text{ }V\] |
D. | \[-0.110\text{ }V\] |
Answer» B. 0.10 V | |
434. |
Which of the following will form a cell with the highest voltage? |
A. | \[1\,MA{{g}^{+}},1\,MC{{o}^{2+}}\] |
B. | \[2M\,A{{g}^{+}},2\,MC{{o}^{2+}}\] |
C. | \[0.1\,M\,A{{g}^{+}},2\,MC{{o}^{2+}}\] |
D. | \[2\,M\,A{{g}^{+}},0.1\,MC{{o}^{2+}}\] |
Answer» E. | |
435. |
A variable, opposite external potential \[({{E}_{ext}})\] is applied to the cell \[Zn|Z{{n}^{2+}}(1M)||C{{u}^{2+}}(1\,M)|Cu,\] of potential 1.1 V. When \[{{E}_{ext}}<1.1V\] and \[{{E}_{ext}}>1.1V\], respectively electrons flow from: |
A. | anode to cathode in both cases |
B. | cathode to anode and anode to cathode |
C. | anode to cathode and cathode to anode |
D. | cathode to anode in both cases |
Answer» D. cathode to anode in both cases | |
436. |
The standard electrode potentials \[\left( E{{{}^\circ }_{{{M}^{+}}/M}} \right)\] of four metals A, B, C and D are\[-1.2V,\text{ }0.6V,\text{ }0.85V\] and \[-0.76\text{ }V,\] respectively. The sequence of deposition of metals on applying potential is: |
A. | A, C, B, D |
B. | B, D, C, A |
C. | C, B, D, A |
D. | D, A, B, C |
Answer» D. D, A, B, C | |
437. |
Standard cell voltage for the cell \[Pb|P{{b}^{2+}}||S{{n}^{2+}}\] is - 0.01 V. If the cell is to exhibit \[{{E}_{cell}}=0\], the value of \[[S{{n}^{2+}}]/[P{{b}^{2+}}]\] should be antilog of- |
A. | +0.3 |
B. | 0.5 |
C. | 1.5 |
D. | \[-0.5\] |
Answer» B. 0.5 | |
438. |
Equivalent conductivity can be expressed in terms of specific conductance \[\kappa \] and concentration (N) in gram equivalent per \[d{{m}^{-3}}\] as: |
A. | \[\kappa\times n\] |
B. | \[\frac{\kappa\times 1000}{N}\] |
C. | \[\frac{\kappa\times N}{1000}\] |
D. | \[\kappa\times N\times 1000\] |
Answer» C. \[\frac{\kappa\times N}{1000}\] | |
439. |
Following cell has EMF 0.7995V. \[Pt|{{H}_{2}}(1\,atm)|HN{{O}_{3}}(1M)||AgN{{O}_{3}}(1M)|Ag\] If we add enough \[KCl\] to the Ag cell so that the final \[C{{l}^{-}}\] is 1M. Now the measured emf of the cell is 0.222V. The \[{{K}_{sp}}\] of \[AgCl\] would be - |
A. | \[1\times {{10}^{-9.8}}\] |
B. | \[1\times {{10}^{-19.6}}\] |
C. | \[2\times {{10}^{-10}}\] |
D. | \[2.64\times {{10}^{-14}}\] |
Answer» B. \[1\times {{10}^{-19.6}}\] | |
440. |
In nitroprusside ion, the iron and NO exist as Fe (II) and \[\overset{+}{\mathop{N}}\,O\] rather than Fe(III) and NO. This can be established by |
A. | estimating the concentration of iron |
B. | estimating the concentration of \[C{{N}^{-}}\] |
C. | thermally decomposing the compound |
D. | measuring the solid state magnetic moment |
Answer» E. | |
441. |
When \[Hg{{I}_{2}}\] is added to excess of aqueous KI, mercury largely exists as. |
A. | \[H{{g}_{2}}{{I}_{2}}\] |
B. | \[{{[Hg{{I}_{3}}]}^{-}}\] |
C. | \[{{[Hg{{I}_{4}}]}^{2-}}\] |
D. | none of these |
Answer» D. none of these | |
442. |
Which of the following is not chelating agent? |
A. | thiosulphato |
B. | oxalate |
C. | glycinato |
D. | ethylene diamine |
Answer» B. oxalate | |
443. |
\[{{[Fe\,{{(en)}_{2}}{{({{H}_{2}}O)}_{2}}]}^{2+}}+en\to \] complex (X). The correct statement about the complex (X) is - |
A. | it is a low spin complex |
B. | it is diamagnetic |
C. | it shows geometrical isomerism |
D. | [a] and [b] both |
Answer» E. | |
444. |
Red precipitate is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal Ni(II). Which of the following statements is not true? |
A. | Red complex has a square planar geometry. |
B. | Complex has symmetrical H-bonding |
C. | Red complex has a tetrahedral geometry. |
D. | Dimethylglyoxime functions as bidentate ligand. |
Answer» D. Dimethylglyoxime functions as bidentate ligand. | |
445. |
The complex showing a spin-only magnetic moment of 2.82 B.M. is: |
A. | \[Ni{{\left( CO \right)}_{4}}\] |
B. | \[{{[NiC{{l}_{4}}]}^{2-}}\] |
C. | \[Ni{{\left( PP{{h}_{3}} \right)}_{4}}\] |
D. | \[{{[Ni{{(CN)}_{4}}]}^{2-}}\] |
Answer» C. \[Ni{{\left( PP{{h}_{3}} \right)}_{4}}\] | |
446. |
Which complex of \[C{{o}^{2+}}\] will have the weakest crystal field splitting - |
A. | \[{{\left[ CoC{{l}_{6}} \right]}^{4-}}\] |
B. | \[{{[Co{{(CN)}_{6}}]}^{4-}}\] |
C. | \[{{[Co{{(N{{H}_{3}})}_{6}}]}^{2+}}\] |
D. | \[{{[Co{{(en)}_{3}}]}^{2+}}\] |
Answer» B. \[{{[Co{{(CN)}_{6}}]}^{4-}}\] | |
447. |
The degeneracy of d-orbitals is lost under:(I) Strong field ligand(II) Weak field ligand(III) Mixed field ligand(IV) Chelated ligand field |
A. | I, II and IV |
B. | I and II |
C. | I, II, III and IV |
D. | I, II and III |
Answer» D. I, II and III | |
448. |
For which value of the x, and y, the following square planar compound shows geometrical isomers \[[Pt{{\left( Cl{{)}_{x}}{{\left( Br \right)}_{y}} \right]}^{2-}}\] |
A. | 1, 3 |
B. | 3, 1 |
C. | 2, 2 |
D. | 1, 1 |
Answer» C. 2, 2 | |
449. |
Relative to the average energy in the spherical crystal field, the \[{{t}_{2g}}\] orbitals is tetrahedral field is |
A. | Raised by \[\left( 2/5 \right){{\Delta }_{t}}\] |
B. | Lowered by \[\left( 2/5 \right){{\Delta }_{t}}\] |
C. | Raised by \[\left( 3/5 \right){{\Delta }_{t}}\] |
D. | Lowered by \[\left( 1/5 \right){{\Delta }_{t}}\] |
Answer» B. Lowered by \[\left( 2/5 \right){{\Delta }_{t}}\] | |
450. |
In solid \[CuS{{O}_{4}}.5{{H}_{2}}O\] copper is coordinated to |
A. | 4 water molecules |
B. | 5 water molecules |
C. | one sulphate molecule |
D. | one water molecule |
Answer» B. 5 water molecules | |