 
			 
			MCQOPTIONS
 Saved Bookmarks
				| 1. | Following figure shows on adiabatic cylindrical container of volume \[{{V}_{0}}\] divided by an adiabatic smooth piston (area of cross-section = A) in two equal parts. An ideal gas \[({{C}_{P}}/{{C}_{V}}=\gamma )\] is at pressure P1 and temperature T1 in left part and gas at pressure P2 and temperature T2 in right part. The piston is slowly displaced and released at a position where it can stay in equilibrium. The final pressure of the two parts will be (Suppose x = displacement of the piston) | 
| A. | \[{{P}_{2}}\] | 
| B. | \[{{P}_{1}}\] | 
| C. | 80 gm | 
| D. | \[\frac{{{P}_{2}}{{\left( \frac{{{V}_{0}}}{2} \right)}^{\gamma }}}{{{\left( \frac{{{V}_{0}}}{2}+Ax \right)}^{\gamma }}}\] | 
| Answer» D. \[\frac{{{P}_{2}}{{\left( \frac{{{V}_{0}}}{2} \right)}^{\gamma }}}{{{\left( \frac{{{V}_{0}}}{2}+Ax \right)}^{\gamma }}}\] | |