Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 12583 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

7051.

Which of the following is the correct order of forces [AIEEE 2002]

A.             Weak < gravitational forces < strong forces (nuclear) < electrostatic
B.             Gravitational < weak < (electrostatic) < strong force
C.             Gravitational < electrostatic < weak < strong force
D.             Weak < gravitational < electrostatic < strong forces
Answer» C.             Gravitational < electrostatic < weak < strong force
7052.

Consider the following statements about the blocks shown in the diagram that are being pushed by a constant force on a frictionless table                           [AMU (Engg.) 2001] A.         All blocks move with the same acceleration B.         The net force on each block is the same.  Which of these statements are/is correct

A.             A only 
B.             B only
C.             Both A and B
D.               Neither A nor B
Answer» B.             B only
7053.

Two blocks are connected by a string as shown in the diagram. The upper block is hung by another string. A force F applied on the upper string produces an acceleration of \[2m/{{s}^{2}}\] in the upward direction in both the blocks. If T and \[{T}'\]  be the tensions in the two parts of the string, then                 [AMU (Engg.) 2000]

A.             \[T=70.8N\] and \[{T}'=47.2N\]
B.             \[T=58.8N\] and \[{T}'=47.2N\]
C.             \[T=70.8N\] and \[{T}'=58.8N\]
D.             \[T=70.8N\] and \[{T}'=0\]
Answer» B.             \[T=58.8N\] and \[{T}'=47.2N\]
7054.

Which of the following groups of forces could be in equibrium                                    [UPSEAT 2004]

A.             3 N, 4 N, 5 N
B.               4N, 5 N, 10 N
C.             30N, 40 N, 80 N
D.               1N, 3 N, 5 N
Answer» B.               4N, 5 N, 10 N
7055.

Three forces starts acting simultaneously on a particle moving with velocity \[\vec{v}.\] These forces are represented in magnitude and direction by the three sides of a triangle ABC (as shown). The particle will now move with velocity                                                [AIEEE 2003]

A.             \[\overrightarrow{v\,}\] remaining unchanged
B.             Less than \[\overrightarrow{v\,}\]
C.             Greater than \[\overrightarrow{v\,}\]
D.                         \[\overrightarrow{v\,}\] in the direction of the largest force BC
Answer» B.             Less than \[\overrightarrow{v\,}\]
7056.

Which of the following sets of concurrent forces may be in equilibrium                                   [KCET 2003]

A.             \[{{F}_{1}}=3N,\,\,{{F}_{2}}=5N,\,\,{{F}_{3}}=9N\]
B.             \[{{F}_{1}}=3N,\,\,{{F}_{2}}=5N,\,\,{{F}_{3}}=1N\]
C.             \[{{F}_{1}}=3N,\,{{F}_{2}}=5N,\,{{F}_{3}}=15N\]
D.             \[{{F}_{1}}=3N,\,\,{{F}_{2}}=5N,\,\,{{F}_{3}}=6N\]
Answer» E.
7057.

The weight of an aeroplane flying in the air is balanced by                        [NCERT 1974]

A.                         Vertical component of the thrust created by air currents striking the lower surface of the wings            
B.                         Force due to reaction of gases ejected by the revolving propeller            
C.                         Upthrust of the air which will be equal to the weight of the air having the same volume as the plane            
D.                         Force due to the pressure difference between the upper and lower surfaces of the wings created by different air speeds on the surfaces          
Answer» E.
7058.

The angular velocity and the amplitude of a simple pendulum is \[\omega \] and a respectively. At a displacement X from the mean position if its kinetic energy is T and potential energy is V, then the ratio of T to V is          [CBSE PMT 1991]

A.            \[{{X}^{2}}{{\omega }^{2}}/({{a}^{2}}-{{X}^{2}}{{\omega }^{2}})\] 
B.            \[{{X}^{2}}/({{a}^{2}}-{{X}^{2}})\]
C.            \[({{a}^{2}}-{{X}^{2}}{{\omega }^{2}})/{{X}^{2}}{{\omega }^{2}}\] 
D.            \[({{a}^{2}}-{{X}^{2}})/{{X}^{2}}\]
Answer» E.
7059.

The potential energy of a particle executing S.H.M. is 2.5 J, when its displacement is half of amplitude. The total energy of the particle be                                                          [DPMT 2001]

A.            18 J
B.            10 J
C.            12 J
D.            2.5 J
Answer» C.            12 J
7060.

 The total energy of the body executing S.H.M. is E. Then the kinetic energy when the displacement is half of the amplitude, is [RPMT 1994, 96; CBSE PMT 1995; JIPMER 2002]

A.            \[\frac{E}{2}\]                      
B.            \[\frac{E}{4}\]
C.            \[\frac{3E}{4}\]                   
D.            \[\frac{\sqrt{3}}{4}E\]
Answer» D.            \[\frac{\sqrt{3}}{4}E\]
7061.

The kinetic energy and potential energy of a particle executing simple harmonic motion will be equal, when displacement  (amplitude = a) is [MP PMT 1987; CPMT 1990; DPMT 1996;  MH CET 1997, 99; AFMC 1999; CPMT 2000]

A.            \[\frac{a}{2}\]                      
B.            \[a\sqrt{2}\]
C.            \[\frac{a}{\sqrt{2}}\]        
D.            \[\frac{a\sqrt{2}}{3}\]
Answer» D.            \[\frac{a\sqrt{2}}{3}\]
7062.

The potential energy of a particle with displacement X is U(X). The motion is simple harmonic, when (K is a positive constant)                                                                          [CPMT 1982]

A.            \[U=-\frac{K{{X}^{2}}}{2}\]    
B.            \[U=K{{X}^{2}}\]
C.            \[U=K\]                                  
D.            \[U=KX\]
Answer» B.            \[U=K{{X}^{2}}\]
7063.

For a particle executing simple harmonic motion, the kinetic energy K is given by \[K={{K}_{o}}{{\cos }^{2}}\omega t\]. The maximum value of potential energy is                                                           [CPMT 1981]

A.            \[{{K}_{0}}\]                         
B.            Zero
C.            \[\frac{{{K}_{0}}}{2}\]      
D.            Not obtainable
Answer» B.            Zero
7064.

A body is executing Simple Harmonic Motion. At a displacement x its potential energy is \[{{E}_{1}}\] and at a displacement y its potential energy is \[{{E}_{2}}\]. The potential energy E at displacement \[(x+y)\] is  [EAMCET 2001]

A.            \[\sqrt{E}=\sqrt{{{E}_{1}}}-\sqrt{{{E}_{2}}}\]             
B.            \[\sqrt{E}=\sqrt{{{E}_{1}}}+\sqrt{{{E}_{2}}}\]
C.            \[E={{E}_{1}}+{{E}_{2}}\]
D.            \[E={{E}_{1}}+{{E}_{2}}\]
Answer» C.            \[E={{E}_{1}}+{{E}_{2}}\]
7065.

A body is moving in a room with a velocity of 20 m / s perpendicular to the two walls separated by 5 meters. There is no friction and the collisions with the walls are elastic. The motion of the body is                                               [MP PMT 1999]

A.            Not periodic                           
B.            Periodic but not simple harmonic
C.            Periodic and simple harmonic
D.            Periodic with variable time period
Answer» C.            Periodic and simple harmonic
7066.

A particle of mass m is hanging vertically by an ideal spring of force constant K. If the mass is made to oscillate vertically, its total energy is                                         [CPMT 1978; RPET 1999]

A.            Maximum at extreme position
B.            Maximum at mean position
C.            Minimum at mean position
D.            Same at all position
Answer» E.
7067.

The amplitude of a particle executing SHM is made three-fourth keeping its time period constant. Its total energy will be                                                                                        [RPMT 2004]

A.            \[\frac{E}{2}\]                      
B.            \[\frac{3}{4}E\]
C.            \[\frac{9}{16}E\]                 
D.            None of these
Answer» D.            None of these
7068.

A particle executes simple harmonic motion with a frequency \[f\]. The frequency with which its kinetic energy oscillates is  [IIT JEE 1973, 87; Manipal MEE 1995; MP PET 1997; DCE 1997; DCE 1999; UPSEAT 2000; RPET 2002; RPMT 2004; BHU 2005]

A.            \[f/2\]                                     
B.            \[f\]
C.            \[2f\]                                       
D.            \[4f\]
Answer» D.            \[4f\]
7069.

A particle starts simple harmonic motion from the mean position. Its amplitude is a and total energy E. At one instant its kinetic energy is \[3E/4.\] Its displacement at that instant is [Kerala PET 2005]

A.            \[1/\sqrt{2}\]                            
B.            \[a/2\]
C.            \[\frac{a}{\sqrt{3/2}}\]           
D.            \[a/\sqrt{3}\]
Answer» C.            \[\frac{a}{\sqrt{3/2}}\]           
7070.

A particle is vibrating in a simple harmonic motion with an amplitude of 4 cm. At what displacement from the equilibrium position, is its energy half potential and half kinetic [NCERT 1984; MNR 1995;  RPMT 1995; DCE 2000; UPSEAT 2000]

A.            1 cm                                         
B.            \[\sqrt{2}\]cm
C.            3 cm                                         
D.            \[2\sqrt{2}\]cm
Answer» E.
7071.

Consider the following statements. The total energy of a particle executing simple harmonic motion depends on its                   (1)      Amplitude  (2)   Period      (3)  Displacement Of these statements                               [RPMT 2001; BCECE 2005]

A.            (1) and (2) are correct      
B.            (2) and (3) are correct      
C.            (1) and (3) are correct      
D.            (1), (2)  and (3) are correct
Answer» B.            (2) and (3) are correct      
7072.

The kinetic energy of a particle executing S.H.M. is 16 J when it is at its mean position. If the mass of the particle is 0.32 kg, then what is the maximum velocity of the particle [MH CET 2004]

A.            \[5m/s\]                                
B.            \[15m/s\]
C.            \[10m/s\]                              
D.            \[20m/s\]
Answer» D.            \[20m/s\]
7073.

The total energy of a particle, executing simple harmonic motion is                                          [AIEEE 2004]

A.            \[\propto x\]                       
B.            \[\propto {{x}^{2}}\]        
C.            Independent of\[x\]        
D.            \[\propto {{x}^{1/2}}\]
Answer» D.            \[\propto {{x}^{1/2}}\]
7074.

A body executes simple harmonic motion. The potential energy (P.E.), the kinetic energy (K.E.) and total energy (T.E.) are measured as a function of displacement x. Which of the following statements is true                             [AIEEE 2003]

A.            P.E. is maximum when x = 0
B.            K.E. is maximum when x = 0
C.            T.E. is zero when x = 0
D.            K.E. is maximum when x is maximum
Answer» C.            T.E. is zero when x = 0
7075.

If and denote the average kinetic and the average potential energies respectively of mass describing a simple harmonic motion, over one period, then the correct relation is                                  [MP PMT 2004]

A.            <E> = <U>                             
B.            <E> = 2<U>
C.            <E> = ? 2<U>                       
D.            <E>= ? <U>
Answer» B.            <E> = 2<U>
7076.

The potential energy of a simple harmonic oscillator when the particle is half way to its end point is (where E is the total energy)                                                             [CBSE PMT 2003]

A.            \[\frac{1}{8}E\]                   
B.            \[\frac{1}{4}E\]
C.            \[\frac{1}{2}E\]                   
D.            \[\frac{2}{3}E\]
Answer» C.            \[\frac{1}{2}E\]                   
7077.

When a mass M is attached to the spring of force constant k, then the spring stretches by l. If the mass oscillates with amplitude l, what will be maximum potential energy stored in the spring                                              [BHU 2002]

A.            \[\frac{kl}{2}\]                     
B.            \[2kl\]
C.            \[\frac{1}{2}Mgl\]              
D.            Mgl
Answer» D.            Mgl
7078.

There is a body having mass m and performing S.H.M. with amplitude a. There is a restoring force \[F=-Kx\], where x is the displacement. The total energy of body depends upon  [CBSE PMT 2001]

A.            K, x                                           
B.            K, a
C.            K, a, x                                      
D.            K, a, v
Answer» C.            K, a, x                                      
7079.

Displacement between maximum potential energy position and maximum kinetic energy position for a particle executing S.H.M. is                                                [CBSE PMT 2002]

A.            ? a
B.            + a
C.            \[\pm \,a\]                           
D.            \[\pm \frac{a}{4}\]
Answer» D.            \[\pm \frac{a}{4}\]
7080.

In a simple harmonic oscillator, at the mean position  [AIEEE 2002]

A.            Kinetic energy is minimum, potential energy is maximum
B.            Both kinetic and potential energies are maximum
C.            Kinetic energy is maximum, potential energy is minimum
D.            Both kinetic and potential energies are minimum
Answer» D.            Both kinetic and potential energies are minimum
7081.

 A particle executes simple harmonic motion along a straight line with an amplitude A. The potential energy is maximum when the displacement is                                         [CPMT 1982]

A.            \[\pm A\]                              
B.            Zero
C.            \[\pm \frac{A}{2}\]           
D.            \[\pm \frac{A}{\sqrt{2}}\]
Answer» B.            Zero
7082.

The total energy of a particle executing S.H.M. is 80 J. What is the potential energy when the particle is at a distance of 3/4 of amplitude from the mean position  [Kerala (Engg.) 2001]

A.            60 J                                           
B.            10 J
C.            40 J
D.            45 J
Answer» E.
7083.

A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic energy change into potential energy is                                [MP PET 2000]

A.            f/2 
B.            f
C.            2 f  
D.            4 f
Answer» D.            4 f
7084.

A body of mass \[1\,kg\] is executing simple harmonic motion. Its displacement \[y(cm)\] at t seconds is given by \[y=6\sin (100t+\pi /4)\]. Its maximum kinetic energy is  [EAMCET (Engg.) 2000]

A.            6 J  
B.            18 J
C.            24 J
D.            36 J
Answer» C.            24 J
7085.

For any S.H.M., amplitude is 6 cm. If instantaneous potential energy is half the total energy then distance of particle from its mean position is                    [RPET 2000]

A.            3 cm                                         
B.            4.2 cm
C.            5.8 cm                                     
D.            6 cm
Answer» C.            5.8 cm                                     
7086.

A vertical mass-spring system executes simple harmonic oscillations with a period of 2 s. A quantity of this system which exhibits simple harmonic variation with a period of 1 s is                                                   [SCRA 1998]

A.            Velocity
B.            Potential energy
C.            Phase difference between acceleration and displacement
D.            Difference between kinetic energy and potential energy
Answer» B.            Potential energy
7087.

The P.E. of a particle executing SHM at a distance x from its equilibrium position is [Roorkee 1992; CPMT 1997; RPMT 1999]

A.            \[\frac{1}{2}m{{\omega }^{2}}{{x}^{2}}\]                    
B.            \[\frac{1}{2}m{{\omega }^{2}}{{a}^{2}}\]
C.            \[\frac{1}{2}m{{\omega }^{2}}({{a}^{2}}-{{x}^{2}})\]            
D.            Zero                                         
Answer» B.            \[\frac{1}{2}m{{\omega }^{2}}{{a}^{2}}\]
7088.

When the displacement is half the amplitude, the ratio of potential energy to the total energy is [CPMT 1999; JIPMER 2000; Kerala PET 2002]

A.            \[\frac{1}{2}\]                      
B.            \[\frac{1}{4}\]
C.            \[1\]                                        
D.            \[\frac{1}{8}\]
Answer» C.            \[1\]                                        
7089.

A particle of mass 10 gm is describing S.H.M. along a straight line with period of 2 sec and amplitude of 10 cm. Its kinetic energy when it is at 5 cm from its equilibrium position is                                [MP PMT 1996]

A.            \[37.5{{\pi }^{2}}ergs\]    
B.            \[3.75{{\pi }^{2}}ergs\]
C.            \[375{{\pi }^{2}}ergs\]     
D.            \[0.375{{\pi }^{2}}ergs\]
Answer» D.            \[0.375{{\pi }^{2}}ergs\]
7090.

When the potential energy of a particle executing simple harmonic motion is one-fourth of its maximum value during the oscillation, the displacement of the particle from the equilibrium position in terms of its amplitude a is [CBSE PMT 1993; EAMCET (Engg.) 1995;                      MP PMT 1994, 2000; MP PET 1995, 96, 2002]

A.            \[a/4\]                                    
B.            \[a/3\]
C.            \[a/2\]                                    
D.            \[2a/3\]
Answer» D.            \[2a/3\]
7091.

The total energy of a particle executing S.H.M. is proportional to [CPMT 1974, 78; EAMCET 1994; RPET 1999; MP PMT 2001; Pb. PMT 2002; MH CET 2002]

A.            Displacement from equilibrium position
B.            Frequency of oscillation
C.            Velocity in equilibrium position
D.            Square of amplitude of motion
Answer» E.
7092.

The wavelength of light visible to eye is of the order of [CPMT 1982, 84]

A.            \[{{10}^{-2}}\,\,m\]           
B.            \[{{10}^{-10}}\] m
C.            1 m                                           
D.            \[6\times {{10}^{-7}}\]m
Answer» E.
7093.

If c is the speed of electromagnetic waves in vacuum, its speed in a medium of dielectric constant K and relative permeability \[{{\mu }_{r}}\] is                                                                  [Kerala PET 2005]

A.            \[v=\frac{1}{\sqrt{{{\mu }_{r}}K}}\]                               
B.            \[v=c\sqrt{{{\mu }_{r}}K}\]
C.            \[v=\frac{c}{\sqrt{{{\mu }_{r}}K}}\]                               
D.            \[v=\frac{K}{\sqrt{{{\mu }_{r}}C}}\]
Answer» D.            \[v=\frac{K}{\sqrt{{{\mu }_{r}}C}}\]
7094.

Light wave is travelling along y-direction. If the corresponding \[\vec{E}\] vector at any time is along the x-axis, the direction of \[\vec{B}\] vector at that time is along [UPSEAT 2005]

A.            y-axis
B.            x-axis
C.            + z-axis
D.            ? z axis
Answer» E.
7095.

Which one of the following is not electromagnetic in nature [Kerala PMT 2005]

A.            X-rays                                     
B.            Gamma rays
C.            Cathode rays                       
D.            Infrared rays
Answer» D.            Infrared rays
7096.

Which of the following is electromagnetic wave  [BCECE 2005]

A.            X-rays and light waves
B.            Cosmic rays and sound waves
C.            Beta rays and sound waves   
D.            Alpha rays and sound waves
Answer» B.            Cosmic rays and sound waves
7097.

Infrared radiation was discovered in 1800 by [KCET 2005]

A.            William Wollaston              
B.            William Herschel
C.            Wilhelm Roentgen            
D.            Thomas Young
Answer» C.            Wilhelm Roentgen            
7098.

The pressure exerted by an electromagnetic wave of intensity I (watts/m2) on a nonreflecting surface is [c is the velocity of light]                                                                                         [AFMC 2005]

A.            \[Ic\]                                       
B.            \[I{{c}^{2}}\]
C.            \[I/c\]
D.            \[I/{{c}^{2}}\]
Answer» D.            \[I/{{c}^{2}}\]
7099.

For skywave propagation of a 10 MHz signal, what should be the minimum electron density in ionosphere [AFMC 2005]

A.            \[\tilde{\ }1.2\times {{10}^{12}}{{m}^{-3}}\]              
B.            \[\tilde{\ }{{10}^{6}}{{m}^{-3}}\]
C.            \[\tilde{\ }{{10}^{14}}{{m}^{-3}}\]                                  
D.            \[\tilde{\ }{{10}^{22}}{{m}^{-3}}\]
Answer» B.            \[\tilde{\ }{{10}^{6}}{{m}^{-3}}\]
7100.

Which of the following represents an infrared wavelength [CPMT 1975; MP PET/PMT 1988]

A.            \[{{10}^{-4}}\] cm              
B.            \[{{10}^{-5}}\] cm
C.            \[{{10}^{-6}}\]cm               
D.            \[{{10}^{-7}}\]cm
Answer» B.            \[{{10}^{-5}}\] cm