Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 12583 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

6251.

For what value of unknown resistance X, the potential difference between B and D will be zero in the circuit shown in the figure                                                                     [MP PMT 2004]

A.            4 W
B.                    6 W
C.                    2 W
D.                    5 W
Answer» C.                    2 W
6252.

In a Wheatstone?s bridge all the four arms have equal resistance R.  If the resistance of the galvanometer arm is also R, the equivalent resistance of the combination as seen by the battery is                                              [CBSE PMT 2003]

A.         \[\frac{R}{2}\]              
B.         R
C.         2 R                                    
D.         \[\frac{R}{4}\]
Answer» C.         2 R                                    
6253.

Thirteen resistances each of resistance R ohm are connected in the circuit as shown in the figure below.  The effective resistance between A and B is                                  [KCET 2003]

A.         2R W
B.         \[\frac{4R}{3}\,\,\Omega \]
C.         \[\frac{2\,R}{3}\,\,\Omega \]
D.         R W
Answer» D.         R W
6254.

A wire has a resistance of 12 ohm. It is bent in the form of equilateral triangle. The effective resistance between any two corners of the triangle is

A.                    9 ohms
B.                                      12 ohms
C.                    6 ohms                            
D.            8/3 ohms
Answer» E.
6255.

The equivalent resistance of the following diagram A and B is                                                     [BCECE 2003]

A.         \[\frac{2}{3}\Omega \]
B.         9 W
C.         6 W
D.         None of these
Answer» E.
6256.

If each of the resistance of the network shown in the figure is R, the equivalent resistance between A and B is [KCET 2002]

A.         5 R
B.         3 R
C.         R
D.         R/2
Answer» D.         R/2
6257.

The equivalent resistance between P and Q in the given figure, is                             [MH CET (Med.) 2001]

A.         50 W
B.         40 W
C.         30 W
D.         20 W
Answer» E.
6258.

Calculate the equivalent resistance between A and B [UPSEAT 2001]

A.         \[\frac{9}{2}\Omega \]
B.         3 W
C.         6 W
D.         \[\frac{5}{3}\Omega \]
Answer» B.         3 W
6259.

In the circuit shown in figure, the current drawn from the battery is 4A.  If 10 W resistor is replaced by 20 W resistor, then current drawn from the circuit will be [KCET 2000; CBSE PMT 2001]

A.         1 A
B.         2 A
C.         3 A
D.         0 A
Answer» E.
6260.

In a typical Wheatstone network, the resistances in cyclic order are A = 10 W, B = 5 W, C = 4 W and D = 4 W for the bridge to be balanced                                                   [KCET 2000]

A.         10 W should be connected in parallel with A
B.         10 W should be connected in series with A
C.         5 W should be connected in series with B            
D.         5 W should be connected in parallel with B
Answer» B.         10 W should be connected in series with A
6261.

In the given figure, equivalent resistance between A and B will be                                           [CBSE PMT 2000]

A.         \[\frac{14}{3}\,\,\Omega \]
B.         \[\frac{3}{14}\,\,\Omega \]
C.         \[\frac{9}{14}\,\,\Omega \]
D.         \[\frac{14}{9}\,\,\Omega \]
Answer» B.         \[\frac{3}{14}\,\,\Omega \]
6262.

The current between B and D in the given figure is [RPET 2000; DCE 2001]

A.         1 amp
B.         2 amp
C.         Zero
D.         0.5 amp
Answer» D.         0.5 amp
6263.

Potential difference between the points P and Q in the electric circuit shown is [KCET 1999]

A.         4.5 V
B.         1.2 V
C.         2.4 V
D.         2.88 V
Answer» E.
6264.

In the circuit shown below the resistance of the galvanometer is 20 W.  In which case of the following alternatives are the currents arranged strictly in the decreasing order                                     [AMU (Engg.) 1999]

A.         \[i,\text{ }{{i}_{1,}}{{i}_{2}},{{i}_{g}}\]
B.         \[i,\text{ }{{i}_{2,}}{{i}_{1}},{{i}_{g}}\]
C.         \[i,\text{ }{{i}_{2,}}{{i}_{g}},{{i}_{1}}\]
D.         \[i,\text{ }{{i}_{1,}}{{i}_{g}},{{i}_{2}}\]
Answer» C.         \[i,\text{ }{{i}_{2,}}{{i}_{g}},{{i}_{1}}\]
6265.

Equivalent resistance between A and B will be [CPMT 1981]

A.            2 ohm
B.                    18 ohm
C.                    6 ohm
D.                    3.6 ohm
Answer» E.
6266.

In the Wheatstone's bridge shown, \[P=2\,\Omega ,\] \[Q=3\,\Omega ,\] \[R=6\,\Omega \] and \[S=8\,\Omega \]. In order to obtain balance, shunt resistance across 'S' must be                                        [SCRA 1998]

A.            \[2\,\Omega \]
B.                    \[3\,\Omega \]
C.                    \[6\,\Omega \]
D.                    \[8\,\Omega \]
Answer» E.
6267.

Five equal resistances each of value R are connected in a form shown alongside. The equivalent resistance of the network                                                     [Roorkee 1999]

A.         Between the points B and D is R
B.         Between the points B and D is \[\frac{R}{2}\]
C.         Between the points A and C is R                         
D.         Between the points A and C is\[\frac{R}{2}\]
Answer» 2 , 3.         Between the points A and C is R                         
6268.

In the given figure, when galvanometer shows no deflection, the current (in ampere) flowing through \[5\,\Omega \] resistance will be                                                                                         [SCRA 1994, 96]

A.                    0.5
B.                    0.6
C.                    0.9
D.                    1.5
Answer» C.                    0.9
6269.

Five resistances are connected as shown in the figure. The effective resistance between the points A and B is                                                [MP PMT 1999; KCET 2001; BHU 2001, 05]

A.         \[\frac{10}{3}\Omega \]
B.         \[\frac{20}{3}\Omega \]  
C.                    \[15\,\Omega \]
D.                    \[6\,\Omega \]
Answer» B.         \[\frac{20}{3}\Omega \]  
6270.

In the arrangement of resistances shown below, the effective resistance between points A and B is                                                                        [MP PMT 1997; RPET 2001]

A.                    \[20\,\Omega \]
B.                                      \[30\,\Omega \]
C.                    \[90\,\Omega \]         
D.            \[110\,\Omega \]
Answer» B.                                      \[30\,\Omega \]
6271.

Five resistors of given values are connected together as shown in the figure. The current in the arm BD will be [MP PMT 1995]

A.                    Half the current in the arm ABC
B.                    Zero
C.                    Twice the current in the arm ABC
D.                    Four times the current in the arm ABC
Answer» C.                    Twice the current in the arm ABC
6272.

The effective resistance between points A and B is                                                                     [NCERT 1974; MP PMT 2000]

A.         \[10\,\Omega \]
B.         \[20\,\Omega \]
C.         \[40\,\Omega \]
D.         None of the above three values
Answer» B.         \[20\,\Omega \]
6273.

In the figure given the value of \[X\] resistance will be, when the p.d. between B and D is zero                  [MP PET 1993]

A.                    4 ohm
B.            6 ohm
C.                    8 ohm                              
D.            9 ohm
Answer» D.            9 ohm
6274.

Five resistors are connected as shown in the diagram. The equivalent resistance between \[A\] and \[B\] is

A.                    \[6\,ohm\]
B.                    \[9\,ohm\]
C.                    \[12\,ohm\]
D.                    \[15\,ohm\]
Answer» B.                    \[9\,ohm\]
6275.

There are \[n\] similar conductors each of resistance \[R\]. The resultant resistance comes out to be \[x\] when connected in parallel. If they are connected in series, the resistance comes out to be                                     [DPMT 2004]

A.                    \[x/{{n}^{2}}\]
B.                                      \[{{n}^{2}}x\]
C.                    \[x/n\]                            
D.            \[nx\]
Answer» C.                    \[x/n\]                            
6276.

The potential difference between points \[A\] and \[B\] of adjoining figure is                    [CPMT 1991]

A.                    \[\frac{2}{3}V\]
B.                                                        \[\frac{8}{9}V\]
C.                                                                                                                                                                                                \[\frac{4}{3}V\]             
D.                                                \[2\,V\]
Answer» D.                                                \[2\,V\]
6277.

The equivalent capacitance in the circuit between A and B will be                                             [UPSEAT 2002]

A.            \[1\,\mu F\]
B.            \[2\,\mu F\]
C.            \[3\,\mu F\]
D.            \[\frac{1}{3}\,\mu F\]
Answer» D.            \[\frac{1}{3}\,\mu F\]
6278.

A parallel plate capacitor has capacitance C. If it is equally filled with parallel layers of materials of dielectric constants \[{{K}_{\text{1}}}\] and \[{{K}_{\text{2}}}\] its capacity becomes \[{{C}_{\text{1}}}\]. The ratio of \[{{C}_{\text{1}}}\] to C is  [MP PMT 2001]

A.            \[{{K}_{1}}+{{K}_{2}}\]
B.                                      \[\frac{{{K}_{1}}{{K}_{2}}}{{{K}_{1}}-{{K}_{2}}}\]
C.            \[\frac{{{K}_{1}}+{{K}_{2}}}{{{K}_{1}}{{K}_{2}}}\]     
D.            \[\frac{2{{K}_{1}}{{K}_{2}}}{{{K}_{1}}+{{K}_{2}}}\]
Answer» E.
6279.

A 20F capacitor is charged to 5V and isolated. It is then connected in parallel with an uncharged 30F capacitor. The decrease in the energy of the system will be [EAMCET 2001]

A.            25 J
B.            200 J
C.            125 J                                        
D.            150 J
Answer» E.
6280.

The combination of capacitors with \[{{C}_{1}}=3\mu \,F,\,{{C}_{2}}=4\mu \,F\] and \[{{C}_{3}}=2\mu \,F\] is charged by connecting AB to a battery. Consider the following statements I.         Energy stored in \[{{C}_{1}}\]= Energy stored in \[{{C}_{2}}\] + Energy stored in \[{{C}_{3}}\] II.       Charge on C1 = Charge on C2 + Charge on C3 III.      Potential drop across C1 = Potential drop across C2 = Potential drop across C3 Which of these is/are correct                        [AMU (Med.) 2001]

A.            I and II
B.            II only
C.            I and III
D.            III only
Answer» C.            I and III
6281.

Consider a parallel plate capacitor of \[10\mu \,F\] (micro-farad) with air filled in the gap between the plates. Now one half of the space between the plates is filled with a dielectric of dielectric constant 4, as shown in the figure. The capacity of the capacitor changes to [AFMC 2001; MP PET 2001]

A.            \[25\,\mu \,F\]
B.            \[20\,\mu \,F\]
C.            \[40\,\mu \,F\]
D.            \[5\,\mu \,F\]
Answer» B.            \[20\,\mu \,F\]
6282.

Three capacitors of capacitance \[3\mu \,F,\,10\mu \,F\,\] and \[15\mu \,F\,\] are connected in series to a voltage source of 100V. The charge on \[15\mu \,F\,\]is [Pb. PMT 1999; AIIMS 2000; CPMT 2001]

A.            \[50\,\mu \,C\]                   
B.            \[100\,\mu \,C\]
C.            \[200\,\mu \,C\]                 
D.            \[280\,\mu \,C\]
Answer» D.            \[280\,\mu \,C\]
6283.

In the figure a capacitor is filled with dielectrics. The resultant capacitance is                                        [UPSEAT 2001]

A.            \[\frac{2{{\varepsilon }_{0}}A}{d}\,\left[ \frac{1}{{{k}_{1}}}+\frac{1}{{{k}_{2}}}+\frac{1}{{{k}_{3}}} \right]\]
B.                                      \[\frac{{{\varepsilon }_{0}}A}{d}\,\left[ \frac{1}{{{k}_{1}}}+\frac{1}{{{k}_{2}}}+\frac{1}{{{k}_{3}}} \right]\]
C.            \[\frac{2{{\varepsilon }_{0}}A}{d}\,\left[ {{k}_{1}}+{{k}_{2}}+{{k}_{3}} \right]\]       
D.            None of these
Answer» E.
6284.

Equivalent capacitance between A and B is          [DCE 2001]

A.            \[8\,\mu \,F\]
B.            \[6\,\mu \,F\]
C.            \[26\,\mu \,F\]
D.            \[10/3\,\mu \,F\]
Answer» B.            \[6\,\mu \,F\]
6285.

\[n\] identical condensers are joined in parallel and are charged to potential\[V\]. Now they are separated and joined in series. Then the total energy and potential difference of the combination will be                                         [MP PET 1993]

A.                    Energy and potential difference remain same
B.                    Energy remains same and potential difference is \[nV\]
C.                    Energy increases \[n\] times and potential difference is \[nV\]
D.                    Energy increases \[n\] times and potential difference remains same
Answer» C.                    Energy increases \[n\] times and potential difference is \[nV\]
6286.

In the figure, three capacitors each of capacitance 6\[pF\] are connected in series. The total capacitance of the combination will be                               [MH CET 2000; CPMT 2001]

A.            \[9\times {{10}^{-12}}\,F\]
B.            \[6\times {{10}^{-12}}\,F\]
C.            \[3\times {{10}^{-12}}\,F\]
D.            \[2\times {{10}^{-12}}\,F\]
Answer» E.
6287.

A parallel plate capacitor of area A, plate separation d and capacitance C is filled with three different dielectric materials having dielectric constants \[{{k}_{1}},{{k}_{2}}\] and \[{{k}_{3}}\] as shown. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by                                               [IIT-JEE Screening 2000]

A.            \[\frac{1}{k}=\frac{1}{{{k}_{1}}}+\frac{1}{{{k}_{2}}}+\frac{1}{2{{k}_{3}}}\]
B.                                      \[\frac{1}{k}=\frac{1}{{{k}_{1}}+{{k}_{2}}}+\frac{1}{2{{k}_{3}}}\]
C.            \[k=\frac{{{k}_{1}}{{k}_{2}}}{{{k}_{1}}+{{k}_{2}}}+2{{k}_{3}}\]         
D.            \[k={{k}_{1}}+{{k}_{2}}+2{{k}_{3}}\]
Answer» C.            \[k=\frac{{{k}_{1}}{{k}_{2}}}{{{k}_{1}}+{{k}_{2}}}+2{{k}_{3}}\]         
6288.

In the circuit here, the steady state voltage across capacitor C is a fraction of the battery e.m.f. The fraction is decided by                                                                             [AMU (Engg.) 2000]

A.            \[{{R}_{\text{1}}}\] only
B.            \[{{R}_{\text{1}}}\] and \[{{R}_{\text{2}}}\] only
C.            \[{{R}_{1}}\] and \[{{R}_{3}}\] only
D.            \[{{R}_{1}}\],\[{{R}_{2}}\] and \[{{R}_{3}}\]
Answer» C.            \[{{R}_{1}}\] and \[{{R}_{3}}\] only
6289.

Ten capacitor are joined in parallel and charged with a battery up to a potential V. They are then disconnected from battery and joined again in series then the potential of this combination will be                                 [RPET 2000]

A.            V    
B.            10V
C.            5V 
D.            2V
Answer» C.            5V 
6290.

A potential difference of 300 volts is applied to a combination of 2.0mF and 8.0mF capacitors connected in series. The charge on the 2.0mF capacitor is                                                                [MP PMT 2000]

A.            \[2.4\times {{10}^{-4}}\]C
B.                                      \[4.8\times {{10}^{-4}}\]C
C.            \[7.2\times {{10}^{-4}}\]C      
D.            \[9.6\times {{10}^{-4}}\]C
Answer» C.            \[7.2\times {{10}^{-4}}\]C      
6291.

In the circuit shown in figure, each capacitor has a capacity of \[3\mu F\]. The equivalent capacity between A and B is [MP PMT 2000]

A.            \[\frac{3}{4}\mu F\]
B.            \[3\mu F\]
C.            \[6\mu F\]
D.            \[5\mu F\]
Answer» E.
6292.

The equivalent capacitance of three capacitors of capacitance \[{{C}_{1}},{{C}_{2}}\] and \[{{C}_{3}}\] are connected in parallel is 12 units and product \[{{C}_{1}}.{{C}_{2}}.{{C}_{3}}=48\]. When the capacitors \[{{C}_{1}}\] and \[{{C}_{2}}\] are connected in parallel, the equivalent capacitance is 6 units. Then the capacitance are                    [KCET 1999]

A.            2, 3, 7                                      
B.            1.5, 2.5, 8
C.            1, 5, 6                                      
D.            4, 2, 6
Answer» E.
6293.

The capacitance between the points A and B in the given circuit will be [AMU (Med.) 1999; MH CET 1999; Pb. PET 2002; BCECE 2005]

A.            1\[\mu \,F\]
B.            2\[\mu \,F\]
C.            3\[\mu \,F\]
D.            4\[\mu \,F\]
Answer» B.            2\[\mu \,F\]
6294.

Three capacitors are connected to \[D.C.\] source of \[100\ volts\] shown in the adjoining figure. If the charge accumulated on plates of \[{{C}_{1}},\ {{C}_{2}}\]and \[{{C}_{3}}\] are \[{{q}_{a}},\ {{q}_{b}},\ {{q}_{c}},{{q}_{d}}.{{q}_{e}}\]and\[{{q}_{f}}\] respectively, then                                               [CPMT 1986]

A.                    \[{{q}_{b}}+{{q}_{d}}+{{q}_{f}}=\frac{100}{9}\,C\]
B.                    \[{{q}_{b}}+{{q}_{d}}+{{q}_{f}}=0\]
C.                    \[{{q}_{a}}+{{q}_{c}}+{{q}_{e}}=50\,C\]
D.                    \[{{q}_{b}}={{q}_{d}}={{q}_{f}}\]
Answer» E.
6295.

The equivalent capacitance between A and B is                                                 [RPMT 1999]

A.            2\[\mu \,F\]                         
B.            3\[\mu \,F\]
C.            5\[\mu \,F\]                         
D.            0.5\[\mu \,F\]
Answer» E.
6296.

 In the given network capacitance, \[{{C}_{1}}=10\mu \,F,\,{{C}_{2}}=5\mu \,F\] and \[{{C}_{3}}=4\mu \,F\]. What is the resultant capacitance between A and B                                                         [Pb. PMT 1999]

A.            2.2\[\mu \,F\]
B.            3.2\[\mu \,F\]
C.            1.2\[\mu \,F\]
D.            4.7\[\mu \,F\]
Answer» C.            1.2\[\mu \,F\]
6297.

A capacitor of \[20\mu F\] is charged to \[500\ volts\] and connected in parallel with another capacitor of \[10\mu F\] and charged to \[200\ volts\]. The common potential is [BHU 1997; CBSE PMT 2000; MH CET 1999; BHU 2004]

A.                    \[200\ volts\]
B.                                      \[300\ volts\]
C.                    \[\text{400 }volts\]    
D.            \[\text{500 }volts\]
Answer» D.            \[\text{500 }volts\]
6298.

Three plates\[A,\ B,\ C\]each of area \[50\,c{{m}^{2}}\] have separation \[3mm\] between \[A\]and \[B\] and \[3mm\] between \[B\] and \[C\]The energy stored when the plates are fully charged is                                                                                               [SCRA 1996]

A.                    \[1.6\times {{10}^{-9}}J\]
B.                    \[2.1\times {{10}^{-9}}J\]
C.                    \[5\times {{10}^{-9}}J\]
D.                    \[7\times {{10}^{-9}}J\]
Answer» C.                    \[5\times {{10}^{-9}}J\]
6299.

The charge on a capacitor of capacitance \[10\mu F\]connected as shown in the figure is                                              [AMU 1995]

A.                    \[20\mu C\]
B.                    \[15\mu C\]
C.                    \[10\mu C\]
D.                    Zero
Answer» B.                    \[15\mu C\]
6300.

The combined capacity of the parallel combination of two capacitors is four times their combined capacity when connected in series. This means that                [EAMCET 1994]

A.                    Their capacities are equal
B.                    Their capacities are \[1\mu F\]and \[2\mu F\]
C.                    Their capacities are \[0.5\mu F\] and \[1\mu F\]
D.                    Their capacities are infinite
Answer» B.                    Their capacities are \[1\mu F\]and \[2\mu F\]