Explore topic-wise MCQs in BITSAT.

This section includes 88 Mcqs, each offering curated multiple-choice questions to sharpen your BITSAT knowledge and support exam preparation. Choose a topic below to get started.

51.

If \({\rm{u}} = {\sin ^{ - 1}}(\frac{{{\rm{x + y}}}}{{\sqrt {\rm{x}} {\rm{ + }}\sqrt {\rm{y}} }})\) then by Euler's theorem, \({\rm{x}}\frac{{\partial {\rm{u}}}}{{\partial {\rm{x}}}} + {\rm{y}}\frac{{\partial {\rm{u}}}}{{\partial {\rm{y}}}}\) equals to

A. \(\frac{1}{2}\sin {\rm{u}}\)
B. \(\frac{1}{2}\tan {\rm{u}}\)
C. x + y
D. sin x + sin y
Answer» C. x + y
52.

If all the terms of a PDF contain the dependent variable or its partial derivatives then such a PDF is called

A. Quasi – linear equation
B. Non-homogeneous partial differential equation
C. Homogeneous partial differential equation
D. Linear equation
Answer» C. Homogeneous partial differential equation
53.

General solution of the Cauchy-Euler equation \(x^2\frac{d^2y}{dx^2}-7x\dfrac{dy}{dx}+16y=0\) is

A. y = c1x2 + c2x4
B. y = c1x2 + c2x-4
C. y = (c1 + c2 In x) x4
D. y = c1x4 + c2x-4 In x
Answer» D. y = c1x4 + c2x-4 In x
54.

One dimensional wave equation is

A. \(\frac{{{\partial ^2}y}}{{\partial {t^2}}} = {\alpha ^2}\frac{{{\partial ^2}y}}{{\partial {x^2}}}\)
B. \(\frac{{\partial y}}{{\partial t}} = {\alpha ^2}\frac{{{\partial ^2}y}}{{\partial {x^2}}}\)
C. \(\frac{{{\partial ^2}y}}{{\partial {t^2}}} = -\frac{{{\partial ^2}y}}{{\partial {x^2}}}\)
D. None of these
Answer» B. \(\frac{{\partial y}}{{\partial t}} = {\alpha ^2}\frac{{{\partial ^2}y}}{{\partial {x^2}}}\)
55.

If xdy = y(dx + ydy) ; y(1) = 1 and y(x) > 0, then what is y(-3) equal to?

A. 3
B. 2
C. 1
D. 0
Answer» B. 2
56.

If y(x) satisfies the differential equation\((\sin x) \frac{dy}{dx}+y\cos x = 1\)subject to the condition y(π/2) = π/2, then y(π/6) is

A. 0
B. π/6
C. π/3
D. π/2
Answer» D. π/2
57.

Particular integral of\(\frac{{{d^2}y}}{{d{x^2}}} + 3\frac{{dy}}{{dx}} + 2y = 5\) is

A. 2 / 5
B. 1 / 5
C. 5 / 2
D. 3 / 2
Answer» D. 3 / 2
58.

General solution of \(x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}-y=0\) is

A. \(y=\frac{C_1}{x}+\frac{C_2}{x^3}\)
B. \(y={C_1}{x^2}+\frac{C_2}{x}\)
C. \(y={C_1}{x}+\frac{C_2}{x}\)
D. \(y={C_1}{x}+\frac{C_2}{x^3}\)
Answer» D. \(y={C_1}{x}+\frac{C_2}{x^3}\)
59.

Differential equation are equations that involve ____________ variables and their ___________ with respect to the ____________ variables.

A. dependent, derivatives, independent
B. independent, derivatives, independent
C. dependent, derivatives, dependent
D. none of these
Answer» B. independent, derivatives, independent
60.

Consider the following statements about the linear dependence of the real valued functions y1 = 1, y2 = x and y3 = x2, over the field of real numbers.I. y1, y2 and y3 are linearly independent on – 1 ≤ x ≤ 0II. y1, y2 and y3 are linearly dependent on 0 ≤ x ≤ 1III. y1, y2 and y3 are linearly independent on 0 ≤ x ≤ 1IV. y1, y2 and y3 are linearly dependent on – 1 ≤ x ≤ 0Which one among the following is correct?

A. Both I and II are true
B. Both I and III are true
C. Both II and IV are true
D. Both III and IV are true
Answer» C. Both II and IV are true
61.

Consider the differential equation \(\frac{{dx}}{{dt}} = \sin \left( x \right)\), with the initial condition x(0) = 0. The solution to this ordinary differential equation is

A. x(t) = 0
B. x(t) = sin (t)
C. x(t) = cos (t)
D. x(t) = sin (t) – cos (t)
Answer» B. x(t) = sin (t)
62.

Bernoulli's differential equation is given by

A. \(\rm \dfrac{dy}{dx}+P(x) y=Q(x)y^n\)
B. \(\rm \dfrac{dy}{dx}+y=Q(x)y^2+R(x)\)
C. \(\rm \dfrac{dy}{dx}+P(x)y=Q(x)y^2\)
D. \(\rm \dfrac{dy}{dx}+P(x)y=Q(x)\)
Answer» B. \(\rm \dfrac{dy}{dx}+y=Q(x)y^2+R(x)\)
63.

A complete solution of partial differential equation \(\frac {\partial z}{\partial x} - 3x^2 = \left(\frac {\partial z}{\partial y}\right)^2 - y\) will be ________, where a and b are arbitrary constants.

A. z2 = ax2 + by2 + 1
B. \(z = ax + x^3 + \left(\frac 2 3\right) (a + y)^{\frac 3 2} + b\)
C. z1 / 2 = (x + a)1 / 2 + (y + b)1 / 2
D. z = (ax2 + by2)3 / 2 + 2
Answer» C. z1 / 2 = (x + a)1 / 2 + (y + b)1 / 2
64.

Particular integral of \(\frac{{{d^2}y}}{{d{x^2}}} + 3\frac{{dy}}{{dx}} + 2y = {e^{ - 2x}} + \sin x\) is

A. \(x{e^{ - 2x}} + \frac{1}{{10}}\left( {\sin x + 3\cos x} \right)\)
B. \( - x{e^{ - 2x}} + \frac{1}{{10}}\left( {\sin x - 3\cos x} \right)\)
C. \( - x{e^{ - 2x}} + \frac{1}{{10}}\left( {\cos x - 3\sin x} \right)\)
D. \( - x{e^{ - 2x}} + \frac{1}{{10}}\left( {\sin x + 3\cos x} \right)\)
Answer» C. \( - x{e^{ - 2x}} + \frac{1}{{10}}\left( {\cos x - 3\sin x} \right)\)
65.

Match the following:a. \(\frac{{{\partial ^2}u}}{{\partial {t^2}}} = C\frac{{{\partial ^2}u}}{{\partial {x^2}}}\)I. Two-dimensional Poisson equationb. \(\frac{{\partial u}}{{\partial t}} = C\frac{{{\partial ^2}u}}{{\partial {x^2}}}\)II. One-dimensional wave equationc. \(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}} = 0\)III. One-dimensional heat equationd. \(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}a}}{{\partial y}} = f\left( {x,y} \right)\)IV. Two-dimensional Laplace equation

A. a-II, b-III, c-I, d-IV
B. a-II, b-III, c-IV, d-I
C. a-IV, b-I, c-III, d-II
D. a-IV, b-III, c-II, d-I
Answer» C. a-IV, b-I, c-III, d-II
66.

A differential equation is given as:\({x^2}\frac{{{d^2}y}}{{d{x^2}}} - 2x\frac{{dy}}{{dx}} + 2y = 4\)The solution of the differential equation in terms of arbitrary constants C1 and C2 is

A. y = C1x2 + C2x + 2
B. \(y = \frac{{{C_1}}}{{{x^2}}} + {C_2}x + 2\)
C. y = C1x2 + C2x + 4
D. \(y = \frac{{{C_1}}}{{{x^2}}} + {C_2}x + 4\)
Answer» B. \(y = \frac{{{C_1}}}{{{x^2}}} + {C_2}x + 2\)
67.

An ordinary differential equation is given below:\(\left( {\frac{{dy}}{{dx}}} \right)\left( {xlnx} \right) = y\)The solution for the above equation is (Note: K denotes a constant in the options)

A. y = Klnx
B. y = Kxlnx
C. y = Kxex
D. y = Kxe-x
Answer» B. y = Kxlnx
68.

If f(Z) is an analytical function and (r, θ) denotes the polar co-ordinates, then:

A. \(\frac {\partial u}{\partial r} = \frac 1 r \frac {\partial v}{\partial \theta}\) and \(\frac {\partial v}{\partial r} = \frac {-1}{r} \frac {\partial u}{\partial \theta}\)
B. \(\frac {\partial u}{\partial r} = \frac {-1} r \frac {\partial v}{\partial \theta}\) and \(\frac {\partial u}{\partial r} = \frac {1} r \frac {\partial v}{\partial \theta}\)
C. \(\frac {\partial u}{\partial r} = -r \frac {\partial v}{\partial \theta}\) and \(\frac {\partial v}{\partial r} = r \frac {\partial u}{\partial \theta}\)
D. \(\frac {\partial u}{\partial r} = r \frac {\partial v}{\partial \theta}\) and \(\frac {\partial v}{\partial r} = -r \frac {\partial u}{\partial \theta}\)
Answer» B. \(\frac {\partial u}{\partial r} = \frac {-1} r \frac {\partial v}{\partial \theta}\) and \(\frac {\partial u}{\partial r} = \frac {1} r \frac {\partial v}{\partial \theta}\)
69.

A partial differential equation derived from the equation z = aeby sinbx will be:

A. \(\frac{{\partial z}}{{\partial y}} = 2y{\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}\)
B. \(\left( {1 + \frac{{\partial z}}{{\partial y}}} \right)\frac{{\partial z}}{{\partial x}} = z\)
C. \(\frac{{{\partial ^2}z}}{{\partial {x^2}}} + \frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0\)
D. \(2z = x\frac{{\partial z}}{{\partial x}} + y\frac{{\partial z}}{{\partial y}}\)
Answer» D. \(2z = x\frac{{\partial z}}{{\partial x}} + y\frac{{\partial z}}{{\partial y}}\)
70.

Complimentary function of the differential equation \({x^2}\frac{{{d^2}y}}{{d{x^2}}} + 4x\frac{{dy}}{{dx}} + 2y = {e^{{x^2}}}\)

A. c1x-1 + c2x-2
B. c1x + c2­x2
C. c1x-1 + c2x2
D. c1x + c2x-2
Answer» B. c1x + c2­x2
71.

Let f(x) be a polynomial satisfying f(0) = 2, f'(0) = 3 and f''(x) = f(x). Then f(4) is equal to

A. \(5 \frac {(e^8 - 1)}{2e^4}\)
B. \(\frac {(5e^8 - 1)}{2e^4}\)
C. \(\frac {2e^4}{5e^8 - 1}\)
D. \(\frac {2e^4}{5(e^8 + 1)}\)
Answer» C. \(\frac {2e^4}{5e^8 - 1}\)
72.

Consider the following differential equation: \(\frac{{dy}}{{dt}} = - 5y\); Initial condition: y = 2 at t = 0The value of y at t = 3 is

A. – 5e-10
B. 2e-10
C. 2e-15
D. -15e2
Answer» D. -15e2
73.

If y = f(x) is solution of \(\frac{{{d^2}y}}{{d{x^2}}} = 0\) with the boundary conditions y = 5 at x = 0, and \(\frac{{dy}}{{dx}} = 2\) at x = 10, f(15) = _____

A. 15
B. 25
C. 35
D. 5
Answer» D. 5
74.

Eliminating a and b from the (x - a)2 + (y - b)2 + z2 = c2 the partial differential equation is

A. z2(p - q + 1) = c2
B. z2(p2 + q2 + 1) = c2
C. z2(p2 + q2) = c2
D. z2(p - q) = c2
Answer» C. z2(p2 + q2) = c2
75.

If k is constant, the general solution of \(\frac{dy}{dx} - \frac{y}{x}=1\) will be in the form of

A. y = x ln (kx)
B. y = k ln (kx)
C. y = xk ln (k)
D. y = x ln (x)
Answer» B. y = k ln (kx)
76.

Given that y1(x) = x-1 is one solution of 2x2y"+ 3xy' - y = 0, x > 0. Then the second linearly independent solution is

A. x-2
B. x
C. x1/2
D. x2
Answer» D. x2
77.

If y(x) is a solution of the differential equation \(\frac{{dy}}{{dx}} + 4xy = {x^3},y(0) = 0\) then \(\mathop {\lim }\limits_{x \to 0} y(x)\) is

A. 0
B. -2
C. 1
D. not existing
Answer» B. -2
78.

If y = e3x + e-5x find the value of \({d^2y\over dx^2}\) at x = 0

A. 8
B. 34
C. 16
D. -16
Answer» C. 16
79.

A partial differential equation formed from the relationz = (x2 + a)(y2 + b) will be

A. \(\frac{\delta z}{\delta x} \frac{\delta z}{ \delta y} = 4xyz\)
B. \(\frac{\delta z}{\delta x} \frac{\delta z}{ \delta y} = 4xy\)
C. \(\frac{\delta z}{\delta x} +\frac{\delta z}{ \delta y} = 4xyz\)
D. \(\frac{\delta z}{\delta x} -\frac{\delta z}{ \delta y} = 4xy\)
Answer» B. \(\frac{\delta z}{\delta x} \frac{\delta z}{ \delta y} = 4xy\)
80.

A curve passes through the point (x = 1, y = 0) and satisfies the differential equation \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{{{{\rm{x}}^2} + {{\rm{y}}^2}}}{{2{\rm{y}}}} + \frac{{\rm{y}}}{{\rm{x}}}.\) The equation that describes the curve is

A. \({\rm{In}}\left( {1 + \frac{{{{\rm{y}}^2}}}{{{{\rm{x}}^2}}}} \right) = {\rm{x}} - 1\)
B. \(\frac{1}{2}{\rm{In}}\left( {1 + \frac{{{{\rm{y}}^2}}}{{{{\rm{x}}^2}}}} \right) = {\rm{x}} - 1\)
C. \({\rm{In}}\left( {1 + \frac{{\rm{y}}}{{\rm{x}}}} \right) = {\rm{x}} - 1\)
D. \(\frac{1}{2}{\rm{In}}\left( {1 + \frac{{\rm{y}}}{{\rm{x}}}} \right) = {\rm{x}} - 1\)
Answer» B. \(\frac{1}{2}{\rm{In}}\left( {1 + \frac{{{{\rm{y}}^2}}}{{{{\rm{x}}^2}}}} \right) = {\rm{x}} - 1\)
81.

Consider the following second-order differential equation:y” – 4y’ + 3y = 2t – 3t2The particular solution of the differential equation is

A. – 2 – 2t – t2
B. – 2t – t2
C. 2t – 3t2
D. – 2 – 2t – 3t2
Answer» B. – 2t – t2
82.

Consider the differential equation \(\frac{{{\rm{dx}}}}{{{\rm{dt}}}} = 10{\rm{\;}}-{\rm{\;}}0.2{\rm{x}}\) with initial condition \({\rm{\;x}}\left( 0 \right){\rm{\;}} = {\rm{\;}}1\). The response x(t) for \({\rm{t}} > 0\) is

A. \(2{\rm{\;}}-{\rm{\;}}{{\rm{e}}^{ - 0.2{\rm{t}}}}\)
B. \(2{\rm{\;}}-{\rm{\;}}{{\rm{e}}^{0.2{\rm{t}}}}\)
C. \(50{\rm{\;}}-{\rm{\;}}49{{\rm{e}}^{ - 0.2{\rm{t}}}}\)
D. \(50{\rm{\;}}-{\rm{\;}}49{{\rm{e}}^{0.2{\rm{t}}}}\)
Answer» D. \(50{\rm{\;}}-{\rm{\;}}49{{\rm{e}}^{0.2{\rm{t}}}}\)
83.

A partial differential equation requires

A. exactly one independent variable
B. two or more independent variables
C. more than one dependent variable
D. exactly one dependent variable
Answer» C. more than one dependent variable
84.

Partial differential equation involves

A. only one independent variable
B. only two independent variables
C. two or more than one independent variable
D. no independent variable
Answer» D. no independent variable
85.

A general solution of the differential equation \((x + y) \frac{dy}{dx} = x - y\) will be _____ where c is a constant.

A. x2 + xy + y2 = c
B. x2 - 2xy - y2 = c
C. 2x2 + xy + y2 = c
D. x2 + 2xy - y2 = c
Answer» C. 2x2 + xy + y2 = c
86.

Cauchy’s linear differential equation \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {a_1}{x^{n - 1}}\frac{{{d^{n - 1}}}}{{d{x^{n - 1}}}} + \ldots + {a_n}y = f\left( x \right)\) can be reduced to a linear differential equation with constant coefficient by using substitution

A. x = ez
B. y = ez
C. z = ex
D. z = ey
Answer» B. y = ez
87.

Fine the solution of \(\frac{{{d^2}y}}{{d{x^2}}} = y\) which passes through the origin and the point \(\left( {\ln2,\frac{3}{4}} \right)\)

A. \(y = \frac{1}{2}{e^x} - {e^x}\)
B. \(y = \frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right)\)
C. \(y = \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right)\)
D. \(y = \frac{1}{2}{e^x} + {e^{ - x}}\)
Answer» D. \(y = \frac{1}{2}{e^x} + {e^{ - x}}\)
88.

If sin \(u = \frac{x^3 + y^3}{\sqrt{x} +\sqrt{y}}\), then xux + yuy will be equal to:

A. \(\frac{5}{2} tan \ u\)
B. \(\frac{3}{2} tan \ u\)
C. \(\frac{1}{2} cot \ u\)
D. \(\frac{3}{2} cot \ u\)
Answer» B. \(\frac{3}{2} tan \ u\)