

MCQOPTIONS
Saved Bookmarks
This section includes 214 Mcqs, each offering curated multiple-choice questions to sharpen your Geotechnical Engineering knowledge and support exam preparation. Choose a topic below to get started.
151. |
For an ordinary clay of medium to low sensitivity, the value of Cc corresponding to the field consolidation line is roughly equal to __________ the compression index of remolded sample. |
A. | 1.3 |
B. | 2.3 |
C. | 3.3 |
D. | 4.3 |
Answer» B. 2.3 | |
152. |
During the laboratory test of consolidation, each pressure increment is maintained constant until the compression virtually ceases and it generally takes ________ |
A. | 2 minutes |
B. | 30 minutes |
C. | 1 hour |
D. | 24 hours |
Answer» E. | |
153. |
The Cc for ordinary clay of medium to low sensitivity, the value of Cc corresponding to the field consolidation line is given by ______ |
A. | Cc=0.009(wL-10%) |
B. | Cc=0.007(wL-10%) |
C. | Cc=0.007(wL-20%) |
D. | Cc=0.007(wL-30%) |
Answer» B. Cc=0.007(wL-10%) | |
154. |
The consolidation between Ro and Rc is called ______________ |
A. | initial consolidation |
B. | corrected zero reading |
C. | secondary consolidation |
D. | initial zero reading |
Answer» B. corrected zero reading | |
155. |
The coefficient of compressibility aᵥ is given by _____________ |
A. | \(a_v=-\frac{e_0}{∆σ’}\) |
B. | \(a_v=-\frac{∆σ’}{∆e}\) |
C. | aᵥ=-∆e |
D. | \(a_v=-\frac{∆e}{∆σ^{‘}}\) |
Answer» E. | |
156. |
The coefficient of consolidation from square root of time fitting method is calculated from the equation _________ |
A. | \(c_v=\frac{(T_v)_{90} d^2}{t_{90}} \) |
B. | \(c_v=\frac{(t_{90})_{90} d^2}{T_{90}} \) |
C. | \(c_v=\frac{(T_v)_{90} d}{T_{90}} \) |
D. | \(c_v=\frac{(T_v)_{90} d^3}{t_{90}} \) |
Answer» B. \(c_v=\frac{(t_{90})_{90} d^2}{T_{90}} \) | |
157. |
The consolidation settlement can be computed by ______ |
A. | using coefficient of volume change only |
B. | using voids ratio only |
C. | using both Using coefficient of volume change and voids ratio |
D. | using compression index only |
Answer» D. using compression index only | |
158. |
The height Hₛ of the solids of the specimen is calculated from _______________ |
A. | \(H_s=\frac{M_d}{GA}\) |
B. | \(H_s=\frac{M_d}{Gρ_w}\) |
C. | \(H_s=\frac{M_d}{Aρ_w}\) |
D. | \(H_s=\frac{M_d}{GAρ_w}\) |
Answer» E. | |
159. |
In three dimension consolidation equation, the pressure increment is ____________ |
A. | applied instantaneously |
B. | applied periodically |
C. | applied intermittently |
D. | not applied at all |
Answer» B. applied periodically | |
160. |
The Rowe cell apparatus also measures the pore pressure. |
A. | True |
B. | False |
C. | May be True or False |
D. | Can't say |
Answer» B. False | |
161. |
The coefficient of consolidation can be determined by comparing characteristics of _______ |
A. | time factor Tᵥ and degree of consolidation U |
B. | degree of consolidation U and pore pressure u |
C. | pore pressure u and effective pressure σ’ |
D. | effective pressure σ’ and total pressure σ |
Answer» B. degree of consolidation U and pore pressure u | |
162. |
For the consolidation of 50%, find the time factor. |
A. | 0.197 |
B. | 0.564 |
C. | 0.253 |
D. | 0.826 |
Answer» B. 0.564 | |
163. |
From the consolidation test data using the ‘Height of solids’ method, the coefficient of volume change can be calculated by _____________ |
A. | \(m_v=-\frac{∆H_o}{H_o}\frac{1}{∆σ’}\) |
B. | \(m_v=\frac{∆H}{H_o} \frac{1}{∆σ’}\) |
C. | \(m_v=-\frac{∆H}{H_o} \frac{1}{∆σ’}\) |
D. | \(m_v=-\frac{∆H}{H}\frac{1}{∆σ’}\) |
Answer» D. \(m_v=-\frac{∆H}{H}\frac{1}{∆σ’}\) | |
164. |
A clay sample in laboratory test has 24mm thickness. It is tested with single drainage and consolidated 50%. The clay layer from which sample was obtained is 4m thick. Find the time to consolidate 50% with single drainage. |
A. | 386 days |
B. | 390 days |
C. | 404 days |
D. | 175 days |
Answer» B. 390 days | |
165. |
In fixed ring cell of consolidation, __________ is permitted to move in _________ direction. |
A. | only top porous stone, downward |
B. | only bottom porous stone, downward |
C. | only bottom porous stone, upward |
D. | only top porous stone, upward |
Answer» B. only bottom porous stone, downward | |
166. |
For a foundation, find the elapsed time in which 10% of ultimate settlement will occur. The coefficient of consolidation is 4*10¯⁴cm²/s. The average drainage path is 50cm. |
A. | 19.9 hours |
B. | 15.5 hours |
C. | 13.9 hours |
D. | 17.5 hours |
Answer» D. 17.5 hours | |
167. |
When the effective pressure is smaller than pre-consolidation pressure, the final settlement is ____________ |
A. | \(ρ_f=Hlog_{10} \frac{σ’}{σ’_0}\) |
B. | \(ρ_f=H \frac{C_c}{1+e_o} log_{10} \frac{σ’}{σ’_0}\) |
C. | \(ρ_f=H \frac{C_S}{1+e_o} log_{10} \frac{σ’}{σ’_0}\) |
D. | \(ρ_f=H \frac{1}{1+e_o} log_{10} \frac{σ’}{σ’_0}\) |
Answer» D. \(ρ_f=H \frac{1}{1+e_o} log_{10} \frac{σ’}{σ’_0}\) | |
168. |
The height of the specimen at various applied pressures is given by _____________ |
A. | H=H₀*∑∆H |
B. | H=H₀-∑∆H |
C. | \(H=\frac{H_0}{∑∆H}\) |
D. | H=H₀+∑∆H |
Answer» E. | |
169. |
If coefficient of volume change is 0.291 m²/MN, ∆e=0.1 and the initial voids ratio is 0.72, then find the change in effective pressure. |
A. | 200 KN/m² |
B. | 50 KN/m² |
C. | 300 KN/m² |
D. | 00 KN/m² |
Answer» B. 50 KN/m² | |
170. |
From the consolidation test, by the change in voids ratio method, the final void is given by _______ |
A. | ef=wf G |
B. | ef=wf AG |
C. | \(e_f=\frac{w_f}{G}\) |
D. | \(e_f=\frac{G}{w_f}\) |
Answer» B. ef=wf AG | |
171. |
If initial voids ratio is 1.08, then find the compression index. |
A. | 0.524 |
B. | 0.243 |
C. | 0.728 |
D. | 0.871 |
Answer» C. 0.728 | |
172. |
If excess hydraulic pressure is 19.62 KN/m² then find the hydraulic head. |
A. | 2m |
B. | 4m |
C. | 8m |
D. | 16m |
Answer» B. 4m | |
173. |
Find the hydrostatic pressure of water at depth 10m. |
A. | 98.1KN/m² |
B. | 54. 1KN/m² |
C. | 32. 1KN/m² |
D. | 43. 1KN/m² |
Answer» B. 54. 1KN/m² | |
174. |
For a foundation, find the elapsed time in which 90% of ultimate settlement will occur. The coefficient of consolidation is 4*10¯⁴cm²/s. The average drainage path is 50cm. |
A. | 56.38 days |
B. | 43.78 days |
C. | 61.34 days |
D. | 78.23 days |
Answer» D. 78.23 days | |
175. |
Considering a parallelepiped for three dimensional consolidation, the volume of water flowing out of parallelepiped is ______________ |
A. | \(q_{out}=(V_x+\frac{∂V_x}{∂x} \frac{dx}{2})dydz+(V_y+\frac{∂V_y}{∂y} \frac{dy}{2})dxdz+(V_z+\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) |
B. | \(q_{out}=(V_x+\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_z+\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) |
C. | \(q_{out}=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz\) |
D. | \(q_{out}=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_y-\frac{∂V_y}{∂y} \frac{dy}{2})dxdz+(V_z-\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) |
Answer» B. \(q_{out}=(V_x+\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_z+\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) | |
176. |
The graph is plotted with the procedure of square root of time fitting method. The line B is drawn that its abscissa at every point is ______ times that of line A. |
A. | 1.40 |
B. | 1.30 |
C. | 1.15 |
D. | 0 |
Answer» D. 0 | |
177. |
The secondary consolidation is from __________ |
A. | R₁₀ to Rf |
B. | R₁₀₀ to Rf |
C. | Rc to R₁₀₀ |
D. | Rf to R₁₀₀ |
Answer» C. Rc to R₁₀₀ | |
178. |
The primary consolidation is from _____________ |
A. | R₁₀₀ to Rf |
B. | R₁₀ to Rc |
C. | R₁ to Rc |
D. | Rc to R₁₀₀ |
Answer» E. | |
179. |
If v is velocity at the entry of the soil element of size dx, dz and width dy as shown in the figure. The quantity of water leaving the element is ___________ |
A. | v |
B. | vdxdy |
C. | \((v + \frac{∂v}{∂z}dz)dxdy\) |
D. | \((v + \frac{∂v}{∂z}dz)dxdz\) |
Answer» D. \((v + \frac{∂v}{∂z}dz)dxdz\) | |
180. |
Considering a parallelepiped for three dimensional consolidation, the volume of water flowing into parallelepiped is __________ |
A. | \(q_{in}=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_y-\frac{∂V_y}{∂y} \frac{dy}{2})dxdz-(V_z-\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) |
B. | \(q_{in}=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz+(V_y-\frac{∂V_y}{∂y} \frac{dy}{2})dxdz+(V_z-\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) |
C. | \(q_{in}=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz+(V_y-\frac{∂V_y}{∂y} \frac{dy}{2})dxdz-(V_z-\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) |
D. | \(q_{in}=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_y-\frac{∂V_y}{∂y} \frac{dy}{2})dxdz+(V_z-\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) |
Answer» C. \(q_{in}=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz+(V_y-\frac{∂V_y}{∂y} \frac{dy}{2})dxdz-(V_z-\frac{∂V_z}{∂z} \frac{dz}{2})dxdy\) | |
181. |
If v is velocity at the entry of the soil element of size dx, dz and width dy as shown in the figure. The net quantity of water squeezed out of the element per unit time is ___________ |
A. | ∆q=v |
B. | ∆q=vdxdy |
C. | \(∆q= \frac{∂v}{∂z}vdzdy\) |
D. | \(∆q=\frac{∂v}{∂z}dxdydz\) |
Answer» E. | |
182. |
In determination of one-dimensional consolidation as shown in the figure, the line AB represents ___________ |
A. | at initial time t₀, u̅=∆σ |
B. | at initial time t₀, u̅=0 |
C. | at final time tf, u̅=∆σ |
D. | at final time tf, u̅=0 |
Answer» E. | |
183. |
If v is velocity at the entry of the soil element of size dx, dz and width dy as shown in the figure. The quantity of water entering the element is ___________ |
A. | v |
B. | vdxdy |
C. | vdzdy |
D. | vdzdx |
Answer» C. vdzdy | |
184. |
In the graph, point Rc represents ________ |
A. | initial consolidation |
B. | corrected zero reading |
C. | secondary consolidation |
D. | initial zero reading |
Answer» C. secondary consolidation | |
185. |
The volume of water squeezed out from the parallelepiped is _______________ |
A. | \(dq=(\frac{∂V_x}{∂x}+\frac{∂V_y}{∂y}+\frac{∂V_z}{∂z})dxdydz \) |
B. | \(dq=(V_x+\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_z+\frac{∂V_z}{∂z} \frac{dz}{2})dxdy \) |
C. | \(dq=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz \) |
D. | \(dq=(V_x-\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_y-\frac{∂V_y}{∂y} \frac{dy}{2})dxdz+(V_z-\frac{∂V_z}{∂z} \frac{dz}{2})dxdy \) |
Answer» B. \(dq=(V_x+\frac{∂V_x}{∂x} \frac{dx}{2})dydz-(V_z+\frac{∂V_z}{∂z} \frac{dz}{2})dxdy \) | |
186. |
The diagram shows a soil profile with following properties:Sand layer: γsat=20.86 kN/m³Clay layer: W=38%, Cc=0.26, G=2.72Find the settlement of the clay layer. |
A. | 0.571 |
B. | 0.321 m |
C. | 0.937 m |
D. | 0.534 m |
Answer» C. 0.937 m | |
187. |
The decrease in the volume of soil mass under stress is known as __________ |
A. | compression |
B. | compressibility |
C. | tension |
D. | consolidation |
Answer» B. compressibility | |
188. |
The diagram shows a soil profile with following properties:Sand layer: γsat=20.86 kN/m³Clay layer: W=38%, Cc=0.26, G=2.72Find the effective pressure in sand layer. |
A. | 44.16 KN/m³ |
B. | 35.33 kN/m³ |
C. | 56.77 kN/m³ |
D. | 23.73 kN/m³ |
Answer» B. 35.33 kN/m³ | |
189. |
The diagram shows a soil profile with following properties:Sand layer: γsat=20.86 kN/m³Clay layer: W=38%, Cc=0.26, G=2.72, Z=2mFind the effective pressure in clay layer. |
A. | 34.5 KN/m³ |
B. | 45.0 KN/m³ |
C. | 16.6 KN/m³ |
D. | 81.5 KN/m³ |
Answer» D. 81.5 KN/m³ | |
190. |
Every process involving a decrease in the water content of a saturated soil without replacement of water by air is called _________ |
A. | compression |
B. | compressibility |
C. | tension |
D. | consolidation |
Answer» E. | |
191. |
When stress is applied to soil mass, the elastic deformation of solid particles is ____________ |
A. | extremely large |
B. | large |
C. | small |
D. | negligibly small |
Answer» E. | |
192. |
The compression resulting from a long term static load and consequent escape of pore water is _____________ |
A. | compression |
B. | compressibility |
C. | tension |
D. | consolidation |
Answer» E. | |
193. |
If increases in the water content due to an increase in the volume of voids is known as _________ |
A. | compression |
B. | compressibility |
C. | swelling |
D. | consolidation |
Answer» D. consolidation | |
194. |
The property of soil mass pertaining to its susceptibility to decrease in volume under pressure is ____________ |
A. | compression |
B. | compressibility |
C. | tension |
D. | consolidation |
Answer» C. tension | |
195. |
Excess pore pressure is also known as ___________ |
A. | hydrodynamic pressure |
B. | seepage pressure |
C. | effective pressure |
D. | total pressure |
Answer» B. seepage pressure | |
196. |
Compression of soil, under short duration of moving or vibratory loads is _________ |
A. | saturation |
B. | compressibility |
C. | swelling |
D. | compaction |
Answer» E. | |
197. |
Slow vertical deformation occurs when a compressive load is applied to a laterally confined layer of sand. |
A. | True |
B. | False |
C. | May be True or False |
D. | Can't say |
Answer» C. May be True or False | |
198. |
The compressibility of clays may also be caused by the following factor. |
A. | changes in salinity |
B. | ion exchange |
C. | expulsion of double layer water from between the grains |
D. | swelling of clay |
Answer» D. swelling of clay | |
199. |
The mechanics of consolidation was demonstrated by ___________ |
A. | Taylor |
B. | Skempton |
C. | Terzaghi |
D. | Darcy |
Answer» D. Darcy | |
200. |
The expansion curve is given by the expression ___________ |
A. | \(e_0=elog_{10} \frac{σ’_0+∆σ’}{σ’_0} \) |
B. | \(e_0=e/C_s \frac{σ’_0+∆σ’}{σ’_0} \) |
C. | \(e_0=e-C_s log_{10}\frac{σ’_0+∆σ’}{σ’_0} \) |
D. | \(e_0=e+C_s log_{10} \frac{σ’}{σ’_0} \) |
Answer» E. | |