

MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
551. |
If the direction consines of a line are \[\left( \frac{1}{c},\frac{1}{c},\frac{1}{c} \right)\] then |
A. | \[0<c<1\] |
B. | \[c>2\] |
C. | \[c>0\] |
D. | \[c=\pm \sqrt{3}\] |
Answer» E. | |
552. |
The mean of the series \[{{x}_{1}},{{x}_{2}},...{{x}_{n}}\] is \[\bar{X}\]. If \[{{x}_{2}}\] is replaced by \[\lambda ,\] then what is the new mean? |
A. | \[\bar{X}-{{x}_{2}}+\lambda \] |
B. | \[\frac{\bar{X}-{{x}_{2}}-\lambda }{n}\] |
C. | \[\frac{\bar{X}-{{x}_{2}}+\lambda }{n}\] |
D. | \[\frac{n\bar{X}-{{x}_{2}}+\lambda }{n}\] |
Answer» E. | |
553. |
If the roots of the equation \[({{p}^{2}}+{{q}^{2}}){{x}^{2}}\]\[-2q(p+r)x\]+ \[({{q}^{2}}+{{r}^{2}})=0\] be real and equal, then \[p,q,r\]will be in |
A. | A.P. |
B. | G.P. |
C. | H.P. |
D. | None of these |
Answer» C. H.P. | |
554. |
Total number of equivalence relations defined in the set \[S=\{a,b,c\}\] is: |
A. | 5 |
B. | 3! |
C. | \[{{2}^{3}}\] |
D. | \[{{3}^{3}}\] |
Answer» B. 3! | |
555. |
If the straight line \[4x+3y+\lambda =0\]touches the circle \[2({{x}^{2}}+{{y}^{2}})=5\], then \[\lambda \]is |
A. | \[\frac{5\sqrt{5}}{2}\] |
B. | \[5\sqrt{2}\] |
C. | \[\frac{5\sqrt{5}}{4}\] |
D. | \[\frac{5\sqrt{10}}{2}\] |
Answer» E. | |
556. |
The angles of a triangle, two of whose sides are represented by the vectors \[\sqrt{3}(\vec{a}\times \vec{b})\] and \[\vec{b}-(\vec{a}.\vec{b})\vec{a}\] where \[\vec{b}\] is a non-zero vector and \[\vec{a}\]is a unit vector are |
A. | \[\tan {{\,}^{-1}}\left( \frac{1}{\sqrt{3}} \right);\,\tan {{\,}^{-1}}\left( \frac{1}{2} \right);\,\tan {{\,}^{-1}}\left( \frac{\sqrt{3}+2}{1-2\sqrt{3}} \right)\] |
B. | \[\tan {{\,}^{-1}}\left( \sqrt{3} \right);\,\tan {{\,}^{-1}}\left( \frac{1}{\sqrt{3}} \right);\,\cot {{\,}^{-1}}\left( 0 \right)\] |
C. | \[\tan {{\,}^{-1}}\left( \sqrt{3} \right);\,\tan {{\,}^{-1}}\left( 2 \right);\,\tan {{\,}^{-1}}\left( \frac{\sqrt{3}+2}{2\sqrt{3}-1} \right)\] |
D. | \[\tan {{\,}^{-1}}\left( \sqrt{3} \right);\,\tan {{\,}^{-1}}\left( \sqrt{2} \right);\,\tan {{\,}^{-1}}\left( \frac{\sqrt{2}+3}{3\sqrt{2}-1} \right)\] |
Answer» C. \[\tan {{\,}^{-1}}\left( \sqrt{3} \right);\,\tan {{\,}^{-1}}\left( 2 \right);\,\tan {{\,}^{-1}}\left( \frac{\sqrt{3}+2}{2\sqrt{3}-1} \right)\] | |
557. |
If \[\vec{a}=\vec{i}+2\hat{j}-3\hat{k}\] and \[\vec{b}=3\hat{i}-\hat{j}+\lambda \hat{k},\] and \[(\vec{a}+\vec{b})\] is perpendicular to \[\vec{a}-\vec{b}\], then what is the value of \[\lambda \]? |
A. | -2 only |
B. | \[\pm 2\] |
C. | 3 only |
D. | \[\pm 3\] |
Answer» C. 3 only | |
558. |
If \[\overrightarrow{p}=\lambda (\overrightarrow{u}\times \overrightarrow{v})+\mu (\overrightarrow{v}\times \overrightarrow{w})+v(\overrightarrow{w}\times \overrightarrow{u})\] and \[[\overset{\to }{\mathop{u}}\,\,\overset{\to }{\mathop{v}}\,\,\overset{\to }{\mathop{w}}\,]=\frac{1}{5}\], then \[\lambda +\mu +v\] is equal to |
A. | 5 |
B. | 10 |
C. | 15 |
D. | None of these |
Answer» E. | |
559. |
If \[a\tan \theta =b\], then \[a\cos 2\theta +b\sin 2\theta =\] [EAMCET 1981, 82; MP PET 1996; J & K 2005] |
A. | \[a\] |
B. | \[b\] |
C. | \[-a\] |
D. | \[-b\] |
Answer» B. \[b\] | |
560. |
A particle is moving in a straight line. Its displacement at time t is given by \[s=-4{{t}^{2}}+2t\], then its velocity and acceleration at time \[t=\frac{1}{2}\] second are [AISSE 1981] |
A. | ? 2, ? 8 |
B. | 2, 6 |
C. | ? 2, 8 |
D. | 2, 8 |
Answer» B. 2, 6 | |
561. |
The angle between the lines \[y=(2-\sqrt{3})x+5\] and \[y=(2+\sqrt{3})x-7\] is [MP PET 1997] |
A. | \[{{30}^{o}}\] |
B. | \[{{60}^{o}}\] |
C. | \[{{45}^{o}}\] |
D. | \[{{90}^{o}}\] |
Answer» C. \[{{45}^{o}}\] | |
562. |
If the line passing through (4, 3) and (2, k) is perpendicular to \[y=2x+3\], then k = [RPET 1985; MP PET 1999] |
A. | -1 |
B. | 1 |
C. | 4 |
D. | 4 |
Answer» E. | |
563. |
If \[\cos p\theta =\cos q\theta ,p\ne q\], then [MP PET 1995] |
A. | \[\theta =2n\pi \] |
B. | \[\theta =\frac{2n\pi }{p\pm q}\] |
C. | \[\theta =\frac{n\pi }{p+q}\] |
D. | None of these |
Answer» C. \[\theta =\frac{n\pi }{p+q}\] | |
564. |
The straight lines \[{{\ell }_{1}},{{\ell }_{2}},{{\ell }_{3}}\] and parallel and lie in the same plane. A total number of m points are taken on \[{{\ell }_{1}}\], n points on \[{{\ell }_{2}}\]. k points on \[{{\ell }_{3}}\]. The maximum number of triangles formed with vertices at these points are: |
A. | \[^{m+n+k}{{C}_{3}}\] |
B. | \[^{m+n+k}{{C}_{3}}{{-}^{m}}{{C}_{3}}{{-}^{n}}{{C}_{3}}{{-}^{k}}{{C}_{3}}\] |
C. | \[^{m}{{C}_{3}}{{+}^{m}}{{C}_{3}}{{+}^{k}}{{C}_{3}}\] |
D. | None of these |
Answer» C. \[^{m}{{C}_{3}}{{+}^{m}}{{C}_{3}}{{+}^{k}}{{C}_{3}}\] | |
565. |
The value of \[\theta \] in between \[{{0}^{o}}\]and \[{{360}^{o}}\]and satisfying the equation \[\tan \theta +\frac{1}{\sqrt{3}}=0\]is equal to [Pb. CET 2002] |
A. | \[\theta ={{150}^{o}}\]and \[{{300}^{o}}\] |
B. | \[\theta ={{120}^{o}}\]and \[{{300}^{o}}\] |
C. | \[\theta ={{60}^{o}}\]and \[{{240}^{o}}\] |
D. | \[\theta ={{150}^{o}}\]and \[{{330}^{o}}\] |
Answer» E. | |
566. |
\[{{x}_{1}},{{x}_{2}},{{x}_{3}},...{{x}_{50}}\] are fifty real numbers such that \[{{x}_{r}} |
A. | \[\frac{^{20}{{C}_{2}}{{\times }^{30}}{{C}_{2}}}{^{50}{{C}_{5}}}\] |
B. | \[\frac{^{30}{{C}_{2}}{{\times }^{19}}{{C}_{2}}}{^{50}{{C}_{5}}}\] |
C. | \[\frac{^{19}{{C}_{2}}{{\times }^{31}}{{C}_{2}}}{^{50}{{C}_{5}}}\] |
D. | None of these |
Answer» C. \[\frac{^{19}{{C}_{2}}{{\times }^{31}}{{C}_{2}}}{^{50}{{C}_{5}}}\] | |
567. |
If the papers of 4 students can be checked by any one of the 7 teachers, then the probability that all the 4 papers are checked by exactly 2 teachers is |
A. | 44379 |
B. | 18233 |
C. | 32/343 |
D. | None of these |
Answer» E. | |
568. |
A machine has three parts, A, B and C, whose chances of being defective are 0.02, 0.10 and 0.05 respectively. The machine stops working if any one of the parts becomes defective. What is the probability that the machine will not stop working? |
A. | 0.06 |
B. | 0.16 |
C. | 0.84 |
D. | 0.94 |
Answer» D. 0.94 | |
569. |
\[\tan 15{}^\circ =\] [EAMCET 1981] |
A. | \[\frac{1}{3}\] |
B. | \[\sqrt{3}-2\] |
C. | \[2-\sqrt{3}\] |
D. | None of these |
Answer» D. None of these | |
570. |
The points of intersection of the line \[4x-3y-10=0\] and the circle \[{{x}^{2}}+{{y}^{2}}-2x+4y-20=0\] are [IIT 1983] |
A. | \[(-2,-6),(4,2)\] |
B. | \[(2,\,6),(-4,-2)\] |
C. | \[(-2,\,6),(-4,\,2)\] |
D. | None of these |
Answer» B. \[(2,\,6),(-4,-2)\] | |
571. |
The equation of the plane which makes with co-ordinate axes, a triangle with its centroid \[(\alpha ,\beta ,\gamma )\]is |
A. | \[\alpha x,\beta y,\gamma z=3\] |
B. | \[\alpha x,\beta y,\gamma z=1\] |
C. | \[\frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=3\] |
D. | \[\frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=1\] |
Answer» D. \[\frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=1\] | |
572. |
The line passing through the points (5, 1, a) and (3, b, 1) crosses the yz-plane at the point\[\left( 0,\frac{17}{2},\frac{-13}{2} \right)\]. Then |
A. | \[a=2,\,b=8\] |
B. | \[a=4,b=6\] |
C. | \[a=6,b=4\] |
D. | \[a=8,b=2\] |
Answer» D. \[a=8,b=2\] | |
573. |
The inverse matrix of \[\left[ \begin{matrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \\ \end{matrix} \right],\]is [MP PET 2003] |
A. | \[\left[ \begin{matrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \\ \end{matrix} \right]\] |
B. | \[\left[ \begin{matrix} \frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1 \\ \end{matrix} \right]\] |
C. | \[\frac{1}{2}\left[ \begin{matrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \\ \end{matrix} \right]\] |
D. | \[\frac{1}{2}\left[ \begin{matrix} 1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \\ \end{matrix} \right]\] |
Answer» B. \[\left[ \begin{matrix} \frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1 \\ \end{matrix} \right]\] | |
574. |
Coefficient of \[{{x}^{r}}\] in the expansion of \[{{(1-2x)}^{-1/2}}\] is [Kurukshetra CEE 2001] |
A. | \[\frac{(2r)\,!}{{{(r\,!)}^{2}}}\] |
B. | \[\frac{(2r)\,!}{{{2}^{r}}{{(r!)}^{2}}}\] |
C. | \[\frac{(2r)!}{{{(r!)}^{2}}{{2}^{2r}}}\] |
D. | \[\frac{(2r)!}{{{2}^{r}}.(r+1)!.(r-1)!}\] |
Answer» C. \[\frac{(2r)!}{{{(r!)}^{2}}{{2}^{2r}}}\] | |
575. |
If \[\sqrt{3{{x}^{2}}-7x-30}+\sqrt{2{{x}^{2}}-7x-5}=x+5\],then x is equal to |
A. | 2 |
B. | 3 |
C. | 6 |
D. | 5 |
Answer» D. 5 | |
576. |
For the lines \[2x+5y=7\]and \[2x-5y=9,\]which of the following statement is true |
A. | Lines are parallel |
B. | Lines are coincident |
C. | Lines are intersecting |
D. | Lines are perpendicular |
Answer» D. Lines are perpendicular | |
577. |
A car is parked by an owner amongst 25 cars in a row, not at either end. On his return he finds that exactly 15 places are still occupied. The probability that the neighboring places are empty is |
A. | \[\frac{91}{276}\] |
B. | \[\frac{15}{184}\] |
C. | \[\frac{15}{92}\] |
D. | None |
Answer» D. None | |
578. |
A natural number x is chosen at random from the first 100 natural numbers. Then the probability, for the equation \[x+\frac{100}{x}>50\] is |
A. | \[\frac{1}{20}\] |
B. | \[\frac{11}{20}\] |
C. | \[\frac{1}{3}\] |
D. | \[\frac{3}{20}\] |
Answer» C. \[\frac{1}{3}\] | |
579. |
What is the number of outcomes when a coin is tossed and then a die is rolled only in case a head is shown on the coin? |
A. | 6 |
B. | 7 |
C. | 8 |
D. | None of these |
Answer» C. 8 | |
580. |
The number of elements in the set \[\{(a,\,b):2{{a}^{2}}+3{{b}^{2}}=35,\ a,\,b\in Z\}\], where Z is the set of all integers, is [Kerala (Engg.) 2005] |
A. | 2 |
B. | 4 |
C. | 8 |
D. | 12 |
E. | 16 |
Answer» D. 12 | |
581. |
\[\mathbf{a}\times (\mathbf{b}\times \mathbf{c})\] is equal to [RPET 1995; Kurukshetra CEE 1998; MP PET 2003] |
A. | \[(\mathbf{a}\,.\,\mathbf{c})\,\mathbf{b}-(\mathbf{a}\,.\,\mathbf{a})\,\mathbf{b}\] |
B. | \[(\mathbf{a}\,.\,\mathbf{c})\,\mathbf{a}-(\mathbf{b}\,.\,\mathbf{c})\,\mathbf{a}\] |
C. | \[(\mathbf{a}\,.\,\mathbf{c})\,\mathbf{b}-(\mathbf{a}\,.\,\mathbf{b})\,\mathbf{c}\] |
D. | \[(\mathbf{a}\,.\,\mathbf{b})\,\mathbf{c}-(\mathbf{a}\,.\,\mathbf{c})\,\mathbf{b}\] |
Answer» D. \[(\mathbf{a}\,.\,\mathbf{b})\,\mathbf{c}-(\mathbf{a}\,.\,\mathbf{c})\,\mathbf{b}\] | |
582. |
Circles \[{{x}^{2}}+{{y}^{2}}-2x-4y=0\] and \[{{x}^{2}}+{{y}^{2}}-8y-4=0\] [IIT 1973] |
A. | Touch each other internally |
B. | Touch each other externally |
C. | Cuts each other at two points |
D. | None of these |
Answer» B. Touch each other externally | |
583. |
If \[\sin \theta +\sin 2\theta +\sin 3\theta =\sin \alpha \]and \[\cos \theta +\cos 2\theta +\cos 3\theta =\cos \alpha \], then q is equal to [AMU 2001] |
A. | \[\alpha /2\] |
B. | \[\alpha \] |
C. | \[2\alpha \] |
D. | \[\alpha /6\] |
Answer» B. \[\alpha \] | |
584. |
Let N be the set of non-negative integers, I the set of integers, \[{{N}_{P}}\] the set of non-positive integers, E the set of even integers and P the set of prime numbers. Then |
A. | \[I-N={{N}_{p}}\] |
B. | \[N\cap {{N}_{p}}=\phi \] |
C. | \[E\cap P=\phi \] |
D. | \[N\Delta {{N}_{p}}=I-\{0\}\] |
Answer» E. | |
585. |
Value of \[2({{\sin }^{6}}\theta +{{\cos }^{6}}\theta )\] \[-3({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )+1\] is |
A. | 2 |
B. | 0 |
C. | 4 |
D. | 6 |
Answer» C. 4 | |
586. |
If \[\frac{{{4}^{n}}}{n+1} |
A. | \[n\ge 1\] |
B. | \[n>0\] |
C. | \[n<0\] |
D. | \[n\ge 2\] |
Answer» E. | |
587. |
Let \[f(x)=\frac{x}{1+{{x}^{2}}}\] and \[g(x)=\frac{{{e}^{-x}}}{1+[x],}\], where \[[x]\]is the greatest integer less than or equal to x, then |
A. | \[D(f+g)=R-[-2,0)\] |
B. | \[D(f+g)=R-[-1,0)\] |
C. | \[R(f)\cap R(g)=\left[ -2,\frac{1}{2} \right]\] |
D. | None of these |
Answer» E. | |
588. |
If the point (x, y) be equidistant from the points \[(a+b,\,b-a)\]and \[(a-b,\,a+b),\]then [MP PET 1983, 94] |
A. | \[ax+by=0\] |
B. | \[ax-by=0\] |
C. | \[bx+ay=0\] |
D. | \[bx-ay=0\] |
Answer» E. | |
589. |
If A and B are \[3\times 3\]matrices such that \[AB=A\] and \[BA=B\], then [Orissa JEE 2003] |
A. | \[{{A}^{2}}=A\]and \[{{B}^{2}}\ne B\] |
B. | \[{{A}^{2}}\ne A\]and \[{{B}^{2}}=B\] |
C. | \[{{A}^{2}}=A\]and \[{{B}^{2}}=B\] |
D. | \[{{A}^{2}}\ne A\]and \[{{B}^{2}}\ne B\] |
Answer» D. \[{{A}^{2}}\ne A\]and \[{{B}^{2}}\ne B\] | |
590. |
Abhay speaks the truth only 60%. Hasan rolls a dice blindfolded and asks abhay to tell him if the outcome is a ?Prime?. Abhay says, ?No?. What is the probability that the outcome is really ?Prime?? |
A. | 0.5 |
B. | 0.75 |
C. | 0.6 |
D. | None of these |
Answer» E. | |
591. |
n letters to each of which corresponds on addressed envelope are placed in the envelop at random. Then the probability that n letter is placed in the right envelope, will be: |
A. | \[\frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+...{{(-1)}^{n}}\frac{1}{n!}\] |
B. | \[\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+...\frac{1}{n!}\] |
C. | \[\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+...{{(-1)}^{n}}\frac{1}{n!}\] |
D. | None of these |
Answer» D. None of these | |
592. |
The difference of two angles is \[1{}^\circ ;\] the circular measure of their sum is 1. What is the smaller angle in circular measure? |
A. | \[\left[ \frac{180}{\pi }-1 \right]\] |
B. | \[\left[ 1-\frac{\pi }{180} \right]\] |
C. | \[\frac{1}{2}\left[ 1-\frac{\pi }{180} \right]\] |
D. | \[\frac{1}{2}\left[ \frac{180}{\pi }-1 \right]\] |
Answer» D. \[\frac{1}{2}\left[ \frac{180}{\pi }-1 \right]\] | |
593. |
The equation of plane passing through a point \[A(2,-1,\,3)\] and parallel to the vectors \[\mathbf{a}=(3,\,0,-1)\] and \[\mathbf{b}=(-3,\,\,2,\,2)\] is [Orissa JEE 2005] |
A. | \[2x-3y+6z-25=0\] |
B. | \[2x-3y+6z+25=0\] |
C. | \[3x-2y+6z-25=0\] |
D. | \[3x-2y+6z+25=0\] |
Answer» B. \[2x-3y+6z+25=0\] | |
594. |
Which of the following is a singleton set? |
A. | \[\{x:\left| x \right|=5,x\in N\}\] |
B. | \[\{x:\left| x \right|=6,x\in Z\}\] |
C. | \[\{x:{{x}^{2}}+2x+1=0,x\in N\}\] |
D. | \[\{x:{{x}^{2}}=7,x\in N\}\] |
Answer» B. \[\{x:\left| x \right|=6,x\in Z\}\] | |
595. |
If \[\sin (\theta +\alpha )=a\] and \[\sin (\theta +\beta )=b,\] then \[\cos 2\,(\alpha -\beta )-4ab\,\cos (\alpha -\beta )\] is equal to |
A. | \[1-{{a}^{2}}-{{b}^{2}}\] |
B. | \[1-2{{a}^{2}}-2{{b}^{2}}\] |
C. | \[2+{{a}^{2}}+{{b}^{2}}\] |
D. | \[2-{{a}^{2}}-{{b}^{2}}\] |
Answer» C. \[2+{{a}^{2}}+{{b}^{2}}\] | |
596. |
If A is a symmetric matrix and \[n\in N\], then \[{{A}^{n}}\]is |
A. | Symmetric |
B. | Skew symmetric |
C. | A Diagonal matrix |
D. | None of these |
Answer» B. Skew symmetric | |
597. |
A line passing through origin and is perpendicular to two given lines \[2x+y+6=0\] and \[4x+2y-9=0\], then the ratio in which the origin divides this line is [DCE 2005] |
A. | 1 : 2 |
B. | 2 : 1 |
C. | 4 : 3 |
D. | 3 : 4 |
Answer» D. 3 : 4 | |
598. |
A unit vector perpendicular to each of the vector \[2\mathbf{i}-\mathbf{j}+\mathbf{k}\] and \[3\mathbf{i}+4\mathbf{j}-\mathbf{k}\] is equal to [MP PET 2003] |
A. | \[\frac{(-3\mathbf{i}+5\mathbf{j}+11\mathbf{k})}{\sqrt{155}}\] |
B. | \[\frac{(3\mathbf{i}-5\mathbf{j}+11\mathbf{k})}{\sqrt{155}}\] |
C. | \[\frac{(6\mathbf{i}-4\mathbf{j}-\mathbf{k})}{\sqrt{53}}\] |
D. | \[\frac{(5\mathbf{i}+3\mathbf{j})}{\sqrt{34}}\] |
Answer» B. \[\frac{(3\mathbf{i}-5\mathbf{j}+11\mathbf{k})}{\sqrt{155}}\] | |
599. |
Let \[f(x)=[x],\] where \[[x]\] denotes the greatest integer less than or equal to x. if \[a=\sqrt{{{2011}^{2}}+2012}\], then the value of fis equal to |
A. | 2010 |
B. | 2011 |
C. | 2012 |
D. | 2013 |
Answer» C. 2012 | |
600. |
For specifying a straight line how many geometrical parameters should be known [MP PET 1982] |
A. | 1 |
B. | 2 |
C. | 4 |
D. | 3 |
Answer» C. 4 | |