Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

1701.

For the function\[f(x)={{e}^{x}},a=0,b=1\], the value of c in mean value theorem will be                                               [DCE 2002]

A.            log x
B.            \[\log (e-1)\]
C.            0
D.            1
Answer» C.            0
1702.

If \[f(x)=\cos x,0\le x\le \frac{\pi }{2}\], then the real number ?c? of the mean value theorem is                                 [MP PET 1994]

A.            \[\frac{\pi }{6}\]
B.            \[\frac{\pi }{4}\]
C.            \[{{\sin }^{-1}}\left( \frac{2}{\pi } \right)\]
D.            \[{{\cos }^{-1}}\left( \frac{2}{\pi } \right)\]
Answer» D.            \[{{\cos }^{-1}}\left( \frac{2}{\pi } \right)\]
1703.

In the mean value theorem, \[f(b)-f(a)=(b-a)f'(c)\]if \[a=4\], \[b=9\] and \[f(x)=\sqrt{x}\] then the value of c is             [J & K 2005]

A.            8.00
B.            5.25
C.                 4.00
D.                 6.25
Answer» E.
1704.

The function \[f(x)={{(x-3)}^{2}}\] satisfies all the conditions of mean value theorem in [3, 4]. A point on\[y={{(x-3)}^{2}}\], where the tangent is parallel to the chord joining (3, 0) and (4, 1) is

A.            \[\left( \frac{7}{2},\frac{1}{2} \right)\]
B.            \[\left( \frac{7}{2},\frac{1}{4} \right)\]
C.            (1, 4)
D.            (4, 1)
Answer» C.            (1, 4)
1705.

The abscissa of the points of the curve \[y={{x}^{3}}\]in the interval [?2, 2], where the slope of the tangents can be obtained by mean value theorem for the interval [?2, 2], are                    [MP PET 1993]

A.            \[\pm \frac{2}{\sqrt{3}}\]
B.            \[\pm \sqrt{3}\]
C.            \[\pm \frac{\sqrt{3}}{2}\]
D.            0
Answer» B.            \[\pm \sqrt{3}\]
1706.

If the function \[f(x)={{x}^{3}}-6{{x}^{2}}+ax+b\] satisfies Rolle?s theorem in the interval \[[1,\,3]\] and \[f'\left( \frac{2\sqrt{3}+1}{\sqrt{3}} \right)=0\], then                                                               [MP PET 2002]

A.            \[a=-11\]
B.            \[a=-6\]
C.            \[a=6\]
D.            \[a=11\]
Answer» E.
1707.

Let \[f(x)=\sqrt{x-1}+\sqrt{x+24-10\sqrt{x-1};}\] \[1

A.            0
B.            \[\frac{1}{\sqrt{x-1}}\]
C.            \[2\sqrt{x-1}-5\]
D.            None of these
Answer» B.            \[\frac{1}{\sqrt{x-1}}\]
1708.

If \[f(x)\] satisfies the conditions of Rolle?s theorem in \[[1,\,2]\] and \[f(x)\] is continuous in \[[1,\,2]\] then \[\int_{1}^{2}{f'(x)dx}\] is equal to                                                               [DCE 2002]

A.            3
B.            0
C.            1
D.            2
Answer» C.            1
1709.

Consider the function \[f(x)={{e}^{-2x}}\]sin 2x over the interval \[\left( 0,\frac{\pi }{2} \right)\]. A real number \[c\in \left( 0,\frac{\pi }{2} \right)\,,\] as guaranteed by Rolle?s theorem, such that \[{f}'\,(c)=0\] is [AMU 1999]

A.            \[\pi /8\]
B.            \[\pi /6\]
C.            \[\pi /4\]
D.            \[\pi /3\]
Answer» B.            \[\pi /6\]
1710.

Let \[f(x)\] satisfy all the conditions of mean value theorem in [0, 2]. If f (0) = 0 and \[|f'(x)|\,\le \frac{1}{2}\] for all x, in [0, 2] then

A.            \[f(x)\le 2\]
B.            \[|f(x)|\le 1\]
C.            \[f(x)=2x\]
D.            \[f(x)=3\]for at least one x in [0, 2]
Answer» C.            \[f(x)=2x\]
1711.

For which interval, the function \[\frac{{{x}^{2}}-3x}{x-1}\] satisfies all the conditions of Rolle's theorem               [MP PET 1993]

A.            [0, 3]
B.            [? 3, 0]
C.            [1.5, 3]
D.            For no interval
Answer» E.
1712.

Let R be an equivalence relation on a finite set A having n elements. Then the number of ordered pairs in R is

A. Less than n
B. Greater than or equal to n
C. Less than or equal to n
D. None of these
Answer» C. Less than or equal to n
1713.

Let \[P=\{(x,\,y)|{{x}^{2}}+{{y}^{2}}=1,\,x,\,y\in R\}\]. Then P is

A. Reflexive
B. Symmetric
C. Transitive
D. Anti-symmetric
Answer» C. Transitive
1714.

The relation ?less than? in the set of natural numbers is                                    [UPSEAT 1994, 98, 99; AMU 1999]

A. Only symmetric
B. Only transitive
C. Only reflexive
D. Equivalence relation
Answer» C. Only reflexive
1715.

If A is the set of even natural numbers less than 8 and B is the set of prime numbers less than 7, then the number of relations from A to B is [NDA 2003]

A. \[{{2}^{9}}\]
B. \[{{9}^{2}}\]
C. \[{{3}^{2}}\]
D. \[{{2}^{9-1}}\]
Answer» B. \[{{9}^{2}}\]
1716.

The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)} on set A = {1, 2, 3} is

A. Reflexive but not symmetric
B. Reflexive but not transitive
C. Symmetric and Transitive
D. Neither symmetric nor transitive
Answer» B. Reflexive but not transitive
1717.

Let S be the set of all real numbers. Then the relation R = {(a, b) : 1 + ab > 0} on S is [NDA 2003]

A. Reflexive and symmetric but not transitive
B. Reflexive and transitive but not symmetric
C. Symmetric, transitive but not reflexive
D. Reflexive, transitive and symmetric
E. None of the above is true
Answer» B. Reflexive and transitive but not symmetric
1718.

Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the set A = {1, 2, 3, 4}. The relation R is [AIEEE 2004]

A. Reflexive
B. Transitive
C. Not symmetric
D. A function
Answer» D. A function
1719.

The number of reflexive relations of a set with four elements is equal to [UPSEAT 2004]

A. \[{{2}^{16}}\]
B. \[{{2}^{12}}\]
C. \[{{2}^{8}}\]
D. \[{{2}^{4}}\]
Answer» E.
1720.

Let\[R=\{(3,\,3),\ (6,\ 6),\ (9,\,9),\ (12,\,12),\ (6,\,12),\ (3,\,9),(3,\,12),\,(3,\,6)\}\] be a relation on the set \[A=\{3,\,6,\,9,\,12\}\]. The relation is [AIEEE 2005]

A. An equivalence relation
B. Reflexive and symmetric only
C. Reflexive and transitive only
D. Reflexive only
Answer» D. Reflexive only
1721.

Let n be a fixed positive integer. Define a relation R on the set Z of integers by, \[aRb\Leftrightarrow n|a-b\]|. Then R is

A. Reflexive
B. Symmetric
C. Transitive
D. Equivalence
Answer» D. Equivalence
1722.

Let L denote the set of all straight lines in a plane. Let a relation R be defined by \[\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L\]. Then R is

A. Reflexive
B. Symmetric
C. Transitive
D. None of these
Answer» C. Transitive
1723.

Let R = {(1, 3), (2, 2), (3, 2)} and S = {(2, 1), (3, 2), (2, 3)} be two relations on set A = {1, 2, 3}. Then RoS =

A. {(1, 3), (2, 2), (3, 2), (2, 1), (2, 3)}
B. {(3, 2), (1, 3)}
C. {(2, 3), (3, 2), (2, 2)}
D. {(2, 3), (3, 2)}
Answer» D. {(2, 3), (3, 2)}
1724.

Let R and S be two equivalence relations on a set A. Then

A. \[R\text{ }\cup \text{ }S\] is an equivalence relation on A
B. \[R\text{ }\cap \text{ }S\] is an equivalence relation on A
C. \[R-S\] is an equivalence relation on A
D. None of these
Answer» C. \[R-S\] is an equivalence relation on A
1725.

Solution set of \[x\equiv 3\] (mod 7), \[p\in Z,\] is given by

A. {3}
B. \[\{7p-3:p\in Z\}\]
C. \[\{7p+3:p\in Z\}\]
D. None of these
Answer» D. None of these
1726.

The relation "congruence modulo m" is

A. Reflexive only
B. Transitive only
C. Symmetric only
D. An equivalence relation
Answer» E.
1727.

In order that a relation R defined on a non-empty set A is an equivalence relation, it is sufficient, if R  [Karnataka CET 1990]

A. Is reflexive
B. Is symmetric
C. Is transitive
D. Possesses all the above three properties
Answer» E.
1728.

If R is an equivalence relation on a set A, then \[{{R}^{-1}}\] is

A. Reflexive only
B. Symmetric but not transitive
C. Equivalence
D. None of these
Answer» D. None of these
1729.

The relation R defined on the set of natural numbers as {(a, b) : a differs from b by 3}, is given by

A. {(1, 4, (2, 5), (3, 6),.....}
B. {(4, 1), (5, 2), (6, 3),.....}
C. {(1, 3), (2, 6), (3, 9),..}
D. None of these
Answer» C. {(1, 3), (2, 6), (3, 9),..}
1730.

Which one of the following relations on R  is an equivalence relation

A. \[a\,{{R}_{1}}\,b\Leftrightarrow |a|=|b|\]
B. \[a{{R}_{2}}b\Leftrightarrow a\ge b\]
C. \[a{{R}_{3}}b\Leftrightarrow a\text{ divides }b\]
D. \[a{{R}_{4}}b\Leftrightarrow a<b\]
Answer» B. \[a{{R}_{2}}b\Leftrightarrow a\ge b\]
1731.

Let A = {1, 2, 3, 4} and let R= {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is

A. Reflexive
B. Symmetric
C. Transitive
D. None of these
Answer» D. None of these
1732.

The void relation on a set A is

A. Reflexive
B. Symmetric and transitive
C. Reflexive and symmetric
D. Reflexive and transitive
Answer» C. Reflexive and symmetric
1733.

Let A be the non-void set of the children in a family. The relation 'x is a brother of y' on A is

A. Reflexive
B. Symmetric
C. Transitive
D. None of these
Answer» C. Transitive
1734.

In the set A = {1, 2, 3, 4, 5}, a relation R is defined by R = {(x, y)| x, y \[\in \] A and x < y}. Then R is

A. Reflexive
B. Symmetric
C. Transitive
D. None of these
Answer» D. None of these
1735.

The relation R defined on a set A  is antisymmetric if \[(a,\,b)\in R\Rightarrow (b,\,a)\in R\] for

A. Every (a, b) \[\in R\]
B. No \[(a,\,b)\in R\]
C. No \[(a,\,b),\,a\ne b,\,\in R\]
D. None of these
Answer» D. None of these
1736.

The relation "is subset of" on the power set P of a set A  is

A. Symmetric
B. Anti-symmetric
C. Equivalency relation
D. None of these
Answer» C. Equivalency relation
1737.

Let R = {(a, a)} be a relation on a set A. Then R is 

A. Symmetric
B. Antisymmetric
C. Symmetric and antisymmetric
D. Neither symmetric nor anti-symmetric
Answer» D. Neither symmetric nor anti-symmetric
1738.

Given two finite sets A  and B  such that n = 2, n = 3. Then total number of relations from A to B is

A. 4
B. 8
C. 64
D. None of these
Answer» D. None of these
1739.

The relation R defined in N as \[aRb\Leftrightarrow b\] is divisible by a is 

A. Reflexive but not symmetric
B. Symmetric but not transitive
C. Symmetric and transitive
D. None of these
Answer» B. Symmetric but not transitive
1740.

Let A = {1, 2, 3, 4} and R be a relation in A given by R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)}. Then R is

A. Reflexive
B. Symmetric
C. Transitive
D. An equivalence relation
Answer» C. Transitive
1741.

Let R be a reflexive relation on a set A and I be the identity relation on A. Then

A. \[R\subset I\]
B. \[I\subset R\]
C. \[R=I\]
D. None of these
Answer» C. \[R=I\]
1742.

If \[R=\{(x,\,y)|x,\,y\in Z,\,{{x}^{2}}+{{y}^{2}}\le 4\}\] is a relation in Z, then domain of R is

A. {0, 1, 2}
B. {0, - 1, - 2}
C. {- 2, - 1, 0, 1, 2}
D. None of these
Answer» D. None of these
1743.

R is a relation from {11, 12, 13} to {8, 10, 12} defined by \[y=x-3\]. Then \[{{R}^{-1}}\] is

A. {(8, 11), (10, 13)}
B. {(11, 18), (13, 10)}
C. {(10, 13), (8, 11)}
D. None of these
Answer» B. {(11, 18), (13, 10)}
1744.

A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by \[xRy\Leftrightarrow x\] is relatively prime to y. Then domain of R is

A. {2, 3, 5}
B. {3, 5}
C. {2, 3, 4}
D. {2, 3, 4, 5}
Answer» E.
1745.

The relation R defined on the set A = {1, 2, 3, 4, 5} by R = {(x, y) : \[|{{x}^{2}}-{{y}^{2}}|

A. {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)}
B. {(2, 2), (3, 2), (4, 2), (2, 4)}
C. {(3, 3), (3, 4), (5, 4), (4, 3), (3, 1)}
D. None of these
Answer» E.
1746.

If R is a relation from a finite set A having m elements to a finite set B having n elements, then the number of relations from A to B is

A. \[{{2}^{mn}}\]
B. \[{{2}^{mn}}-1\]
C. \[2mn\]
D. \[{{m}^{n}}\]
Answer» B. \[{{2}^{mn}}-1\]
1747.

Let R be a reflexive relation on a finite set A having            n-elements, and let there be m ordered pairs in R. Then

A. \[m\ge n\]
B. \[m\le n\]
C. \[m=n\]
D. None of these
Answer» B. \[m\le n\]
1748.

Let A = {a, b, c} and B = {1, 2}. Consider a relation R  defined from set A to set B. Then R  is equal to set [Kurukshetra CEE 1995]

A. A
B. B
C. A × B
D. B × A
Answer» D. B × A
1749.

A relation from P to Q  is

A. A universal set of P × Q
B. P × Q
C. An equivalent set of P × Q
D. A subset of P × Q
Answer» E.
1750.

If R  is a relation from a set A  to a set B and S is a relation from B to a set C, then the relation SoR

A. Is from A to C
B. Is from C to A
C. Does not exist
D. None of these
Answer» B. Is from C to A