Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

7351.

If the sides of a triangle are in ratio 3 : 7 : 8, then R : r is equal to  

A. 0.0881944444444445
B. 0.293055555555556
C. 0.129861111111111
D. 0.29375
Answer» C. 0.129861111111111
7352.

Radius of a circle is increasing uniformly at the rate of \[3cm/\sec .\]The rate of increasing of area when radius is \[10cm\], will be

A.   \[\pi \,c{{m}^{2}}/s\]
B.   \[2\pi \,c{{m}^{2}}/s\]
C.   \[10\pi \,c{{m}^{2}}/s\]
D.   None of these
Answer» E.
7353.

The intercept on the line \[y=x\] by the circle \[{{x}^{2}}+{{y}^{2}}-2x=0\] is AB, equation of the circle on AB as a diameter is [AIEEE 2004]

A.   \[{{x}^{2}}+{{y}^{2}}+x-y=0\]   
B.   \[{{x}^{2}}+{{y}^{2}}-x+y=0\]
C.   \[{{x}^{2}}+{{y}^{2}}+x+y=\]0 
D.          \[{{x}^{2}}+{{y}^{2}}-x-y=0\]
Answer» E.
7354.

A letter is known to have come either from LONDON or CLIFTON; on the postmark only the two consecutive letters ON are legible. The probability that it came from LONDON is

A.        \[\frac{5}{17}\]    
B.        \[\frac{12}{17}\]
C.        \[\frac{17}{30}\]  
D.        \[\frac{3}{5}\]
Answer» C.        \[\frac{17}{30}\]  
7355.

If \[{{x}^{2}}+ax+10=0\] and \[{{x}^{2}}+bx-10=0\] have a common root, then \[{{a}^{2}}-{{b}^{2}}\] is equal to  [Kerala (Engg.) 2002]

A. 10
B. 20
C. 30
D. 40
Answer» E.
7356.

If the lines \[y=(2+\sqrt{3})x+4\] and \[y=kx+6\]are inclined at an angle \[{{60}^{o}}\]to each other, then the value of k will be

A. 1        
B. 2
C. 1        
D. 2
Answer» D. 2
7357.

 The smallest value of \[{{x}^{2}}-3x+3\] in the interval \[(-3,\,3/2)\] is [EAMCET 1991; 93]

A. 44289
B. 5
C. -15
D. -20
Answer» B. 5
7358.

The sum of \[1+n\left( 1-\frac{1}{x} \right)+\frac{n(n+1)}{2!}\text{  }{{\left( 1-\frac{1}{x} \right)}^{2}}+.....\infty ,\] will be[Roorkee 1975]

A. \[{{x}^{n}}\]
B. \[{{x}^{-n}}\]
C. \[{{\left( 1-\frac{1}{x} \right)}^{n}}\]
D. None of these
Answer» B. \[{{x}^{-n}}\]
7359.

A ladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along the ground away from the wall at the rate of \[1.5\,m/\sec \]. The length of the highest point of the ladder when the foot of the ladder  \[4.0\,m\] away from the wall decreases at the rate of [Kurukshetra CEE 1996]

A.   2 m/sec
B.   3 m/sec
C.   2.5 m/sec
D.   1.5 m/sec
Answer» B.   3 m/sec
7360.

In a box containing 100 eggs, 10 eggs are rotten. The probability that out of a sample of 5 eggs none is rotten if the sampling is with replacement is [MP PET 1991; MNR 1986; RPET 1995; UPSEAT 2000]

A. \[{{\left( \frac{1}{10} \right)}^{5}}\]
B. \[{{\left( \frac{1}{5} \right)}^{5}}\]
C. \[{{\left( \frac{9}{5} \right)}^{5}}\]
D. \[{{\left( \frac{9}{10} \right)}^{5}}\]
Answer» E.
7361.

\[1+3+7+15+31+..........\]to \[n\] terms = [IIT 1963]

A. \[{{2}^{n+1}}-n\]
B. \[{{2}^{n+1}}-n-2\]
C. \[{{2}^{n}}-n-2\]
D. None of these
Answer» C. \[{{2}^{n}}-n-2\]
7362.

In how many ways can 15 members of a council sit along a circular table, when the Secretary is to sit on one side of the Chairman and the Deputy Secretary on the other side

A. \[2\times 12\,!\]
B. 24
C. \[2\times 15\,!\]
D. None of these
Answer» B. 24
7363.

A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of 50 cm3/min. When the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases, is [AIEEE 2005]

A. \[\frac{1}{54\pi }\]cm/min
B. \[\frac{5}{6\pi }\] cm/min
C. \[\frac{1}{36\pi }\] cm/min
D. \[\frac{1}{18\pi }\] cm/min
Answer» E.
7364.

If \[\mathbf{a}=\mathbf{i}+2\mathbf{j}-2\mathbf{k},\,\,\mathbf{b}=2\mathbf{i}-\mathbf{j}+\mathbf{k}\]and \[\mathbf{c}=\mathbf{i}+3\mathbf{j}-\mathbf{k},\] then \[\mathbf{a}\times (\mathbf{b}\times \mathbf{c})\] is equal to [RPET 1989]

A. \[20\mathbf{i}-3\mathbf{j}+7\mathbf{k}\]
B. \[20\mathbf{i}-3\mathbf{j}-7\mathbf{k}\]
C. \[20\mathbf{i}+3\mathbf{j}-7\mathbf{k}\]
D. None of these
Answer» B. \[20\mathbf{i}-3\mathbf{j}-7\mathbf{k}\]
7365.

If \[\mathbf{a}=3\mathbf{i}-\mathbf{j}+2\mathbf{k},\] \[\mathbf{b}=2\mathbf{i}+\mathbf{j}-\mathbf{k}\] and \[\mathbf{c}=\mathbf{i}-2\mathbf{j}+2\mathbf{k},\]then \[(\mathbf{a}\times \mathbf{b})\times \mathbf{c}\] is equal to

A. \[24\mathbf{i}+7\mathbf{j}-5\mathbf{k}\]
B. \[7\mathbf{i}-24\mathbf{j}+5\mathbf{k}\]
C. \[12\mathbf{i}+3\mathbf{j}-5\mathbf{k}\]
D. \[\mathbf{i}+\mathbf{j}-7\mathbf{k}\]
Answer» B. \[7\mathbf{i}-24\mathbf{j}+5\mathbf{k}\]
7366.

If a, b, c, d are coplanar vectors, then \[(\mathbf{a}\times \mathbf{b})\times (\mathbf{c}\times \mathbf{d})=\] [MP PET 1998]

A. \[|\,\mathbf{a}\,\times \,\mathbf{c}{{|}^{2}}\]
B. \[|\mathbf{a}\times \mathbf{d}{{|}^{2}}\]
C. \[|\mathbf{b}\times \mathbf{c}{{|}^{2}}\]
D. 0
Answer» E.
7367.

Let \[a,\,b,\,c\] be three vectors from \[a\times (b\times c)=(a\times b)\times c\], if [Orissa JEE 2003]

A. \[b\times (a\times c)=0\]
B. \[a(b\times c)=0\]
C. \[c\times a=a\times b\]
D. \[c\times b=b\times a\]
Answer» B. \[a(b\times c)=0\]
7368.

\[[\mathbf{b}\times \mathbf{c}\,\,\mathbf{c}\times \mathbf{a}\,\,\mathbf{a}\times \mathbf{b}]\] is equal to [MP PET 2004]

A. \[\mathbf{a}\times (\mathbf{b}\times \mathbf{c})\]
B. \[2\,[\mathbf{a}\,\mathbf{b}\,\mathbf{c}]\]
C. \[{{[\mathbf{a}\,\mathbf{b}\,\mathbf{c}]}^{2}}\]
D. \[[\mathbf{a}\,\mathbf{b}\,\mathbf{c}]\]
Answer» D. \[[\mathbf{a}\,\mathbf{b}\,\mathbf{c}]\]
7369.

If \[\mathbf{a}=\mathbf{i}-\mathbf{j},\mathbf{b}=\mathbf{i}+\mathbf{j},\,\,\,\mathbf{c}=\mathbf{i}+3\mathbf{j}+5\mathbf{k}\]and\[\mathbf{n}\]is a unit vector such that \[\mathbf{b}.\mathbf{n}=0,\mathbf{a}.\mathbf{n}=0\]then the value of \[|\mathbf{c}\ .\ \mathbf{n}|\] is equal to [DCE 2005]

A. 1
B. 3
C. 5
D. 2
Answer» D. 2
7370.

Three forces \[\mathbf{i}+2\,\mathbf{j}-3\,\mathbf{k},\,\,2\,\mathbf{i}+3\,\mathbf{j}+4\,\mathbf{k}\] and \[\mathbf{i}-\mathbf{j}+\mathbf{k}\] are acting on a particle at the point (0, 1, 2). The magnitude of the moment of the forces about the point \[(1,\,-2,\,0)\] is [MNR 1983]

A. \[2\sqrt{35}\]
B. \[6\sqrt{10}\]
C. \[4\sqrt{17}\]
D. None of these
Answer» C. \[4\sqrt{17}\]
7371.

If a and b are two vectors such that a . b = 0 and \[\mathbf{a}\times \mathbf{b}=\mathbf{0},\] then [IIT Screening 1989; MNR 1988; UPSEAT 2000, 01]

A. a is parallel to b
B. a is perpendicular to b
C. Either a or b is a null vector
D. None of these
Answer» D. None of these
7372.

The area of the triangle having vertices as \[\mathbf{i}-2\mathbf{j}+3\mathbf{k},\] \[\,-2\mathbf{i}+3\mathbf{j}+\mathbf{k}\] , \[4\mathbf{i}-7\mathbf{j}+7\mathbf{k}\] is [MP PET 2004]

A. 26
B. 11
C. 36
D. 0
Answer» E.
7373.

The area of a parallelogram whose adjacent sides are \[\mathbf{i}-2\mathbf{j}+3\mathbf{k}\] and \[2\mathbf{i}+\mathbf{j}-4\mathbf{k},\] is [MP PET 1996, 2000]

A. \[5\sqrt{3}\]
B. \[10\sqrt{3}\]
C. \[5\sqrt{6}\]
D. \[10\sqrt{6}\]
Answer» D. \[10\sqrt{6}\]
7374.

The position vectors of the points A, B and C are \[\mathbf{i}+\mathbf{j},\,\,\mathbf{j}+\mathbf{k}\] and \[\mathbf{k}+\mathbf{i}\] respectively. The vector area of the \[\Delta ABC=\pm \,\frac{1}{2}\overrightarrow{\alpha }\] where \[\overrightarrow{\alpha }=\] [MP PET 1989]

A. \[-\mathbf{i}+\mathbf{j}+\mathbf{k}\]
B. \[\mathbf{i}-\mathbf{j}+\mathbf{k}\]
C. \[\mathbf{i}+\mathbf{j}-\mathbf{k}\]
D. \[\mathbf{i}+\mathbf{j}+\mathbf{k}\]
Answer» E.
7375.

The area of a triangle whose vertices are \[A\,(1,\,-1,\,2),\] \[B\,(2,\,1,\,-1)\] and \[C\,(3,\,-1,\,2)\] is [MNR 1983; IIT 1983]

A. 13
B. \[\sqrt{13}\]
C. 6
D. \[\sqrt{6}\]
Answer» C. 6
7376.

The unit vector perpendicular to both \[\mathbf{i}+\mathbf{j}\] and \[\mathbf{j}+\mathbf{k}\] is [Kerala (Engg.) 2002]

A. i ? j + k
B. i + j + k
C. \[\frac{\mathbf{i}+\mathbf{j}-\mathbf{k}}{\sqrt{3}}\]
D. \[\frac{\mathbf{i}-\mathbf{j}+\mathbf{k}}{\sqrt{3}}\]
Answer» E.
7377.

The unit vector perpendicular to both the vectors i ? 2j + 3k and i + 2j ? k is [DCE 2001]

A. \[\frac{1}{\sqrt{3}}(-i+j+k)\]
B. \[(-\mathbf{i}+\mathbf{j}+\mathbf{k})\]
C. \[\frac{(i+j-k)}{\sqrt{3}}\]
D. None of these
Answer» B. \[(-\mathbf{i}+\mathbf{j}+\mathbf{k})\]
7378.

If \[{{(\mathbf{a}\times \mathbf{b})}^{2}}+{{(\mathbf{a}\,\,.\,\,\mathbf{b})}^{2}}=144\] and \[|\mathbf{a}|\,=4,\] then \[|\mathbf{b}|\,=\] [EAMCET 1994]

A. 16
B. 8
C. 3
D. 12
Answer» D. 12
7379.

A unit vector perpendicular to vector c and coplanar with vectors a and b is [MP PET 1999]

A. \[\frac{\mathbf{a}\times (\mathbf{b}\times \mathbf{c})}{|\mathbf{a}\times (\mathbf{b}\times \mathbf{c})|}\]
B. \[\frac{\mathbf{b}\times (\mathbf{c}\times \mathbf{a})}{|\mathbf{b}\times (\mathbf{c}\times \mathbf{a})|}\]
C. \[\frac{\mathbf{c}\times (\mathbf{a}\times \mathbf{b})}{|\mathbf{c}\times (\mathbf{a}\times \mathbf{b})|}\]
D. None of these
Answer» D. None of these
7380.

If \[\mathbf{a}=2\mathbf{i}+2\mathbf{j}-\mathbf{k}\] and \[\mathbf{b}=6\mathbf{i}-3\mathbf{j}+2\mathbf{k},\] then the value of \[\mathbf{a}\times \mathbf{b}\] is [MNR 1978; RPET 2001]

A. \[2\mathbf{i}+2\mathbf{j}-\mathbf{k}\]
B. \[6\mathbf{i}-3\mathbf{j}+2\mathbf{k}\]
C. \[\mathbf{i}-10\mathbf{j}-18\mathbf{k}\]
D. \[\mathbf{i}+\mathbf{j}+\mathbf{k}\]
Answer» D. \[\mathbf{i}+\mathbf{j}+\mathbf{k}\]
7381.

Let a and b be two non-collinear unit vectors. If \[\mathbf{u}=\mathbf{a}-(\mathbf{a}\,.\,\mathbf{b})\,\mathbf{b}\] and \[\mathbf{v}=\mathbf{a}\times \mathbf{b},\] then | v | is [IIT 1999]

A. | u |
B. | u |+| u . a |
C. | u |+| u . b |
D. | u |+ u . (a+b)
Answer» D. | u |+ u . (a+b)
7382.

The components of a vector \[\vec{a}\] along and perpendicular to a non-zero vector \[\vec{b}\] are

A. \[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{b}\And \vec{a}-\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{b}\]
B. \[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\And \vec{a}+\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\]
C. \[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{a}-\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{a}\]
D. None of these
Answer» B. \[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\And \vec{a}+\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\]
7383.

Resolved part of vector \[\vec{a}\] along vector \[\vec{b}\] is \[{{\vec{a}}_{1}}\] and that perpendicular to \[\vec{b}\] is \[{{\vec{a}}_{2}}\] then \[{{\vec{a}}_{1}}\times {{\vec{a}}_{2}}\] is equal to

A. \[\frac{(\vec{a}\times \vec{b})\cdot \vec{b}}{{{\left| {\vec{b}} \right|}^{2}}}\]
B. \[\frac{(\vec{a}\cdot \vec{b})\vec{a}}{{{\left| {\vec{a}} \right|}^{2}}}\]
C. \[\frac{(\vec{a}\cdot \vec{b})(\vec{b}\times \vec{a})}{{{\left| {\vec{b}} \right|}^{2}}}\]
D. \[\frac{(\vec{a}\cdot \vec{b})(\vec{b}\times \vec{a})}{\left| \vec{b}\times \vec{a} \right|}\]
Answer» D. \[\frac{(\vec{a}\cdot \vec{b})(\vec{b}\times \vec{a})}{\left| \vec{b}\times \vec{a} \right|}\]
7384.

If \[\overset{\to }{\mathop{p}}\,\] and \[\overset{\to }{\mathop{q}}\,\] are two unit vectors inclined at an angle \[\alpha \] to each other than \[|\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,|

A. \[\frac{2\pi }{3}<\alpha <\frac{4\pi }{3}\]
B. \[\frac{4\pi }{3}<\alpha <2\pi \]
C. \[0<\alpha <\frac{\pi }{3}\]
D. \[\alpha =\frac{\pi }{2}\]
Answer» B. \[\frac{4\pi }{3}<\alpha <2\pi \]
7385.

What is the vector equally inclined to the vectors\[\hat{i}+3\hat{j}\] and\[3\hat{i}+\hat{j}\]?

A. \[\hat{i}+\hat{j}\]
B. \[2\hat{i}-\hat{j}\]
C. \[2\hat{i}+\hat{j}\]
D. None of theses
Answer» B. \[2\hat{i}-\hat{j}\]
7386.

If \[\overset{\to }{\mathop{c}}\,\] is the unit vector perpendicular to both the vectors \[\overset{\to }{\mathop{a}}\,\] and \[\overset{\to }{\mathop{b}}\,\], then what is another unit vector perpendicular to both the vectors \[\overset{\to }{\mathop{a}}\,\] and \[\overset{\to }{\mathop{b}}\,?\]

A. \[\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{a}}\,\]
B. \[\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{b}}\,\]
C. \[-\frac{\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right)}{\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|}\]
D. \[\frac{\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right)}{\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|}\]
Answer» E.
7387.

For any vector\[\vec{\alpha }\], what is\[\left( \overset{\to }{\mathop{\alpha }}\,.\widehat{i} \right)\widehat{i}+\left( \overset{\to }{\mathop{\alpha }}\,.\widehat{j} \right)\widehat{j}+\left( \overset{\to }{\mathop{a}}\,.\widehat{k} \right)\widehat{k}\] equal to?

A. \[\overset{\to }{\mathop{\alpha }}\,\]
B. \[3\overset{\to }{\mathop{\alpha }}\,\]
C. \[-\overset{\to }{\mathop{\alpha }}\,\]
D. \[\overset{\to }{\mathop{0}}\,\]
Answer» B. \[3\overset{\to }{\mathop{\alpha }}\,\]
7388.

If \[\overset{\to }{\mathop{a}}\,,\text{ }\overset{\to }{\mathop{b}}\,,\text{ }\overset{\to }{\mathop{c}}\,\] are the position vectors of corners A, B, C of a parallelogram ABCD, then what is the position vector of the corner D?

A. \[\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
B. \[\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{c}}\,\]
C. \[\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
D. \[-\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
Answer» D. \[-\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
7389.

If \[\vec{a}.\,\vec{b}=0\] and \[\vec{a}+\vec{b}\] makes an angle of \[60{}^\circ \] with \[\vec{a}\], then

A. \[|\vec{a}|=2|\vec{b}|\]
B. \[2|\vec{a}|=|\vec{b}|\]
C. \[|\vec{a}|=\sqrt{3}|\vec{b}|\]
D. \[|\vec{b}|=\sqrt{3}|\vec{a}|\]
Answer» E.
7390.

Let \[\overrightarrow{A}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},\text{ }\overrightarrow{B}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] and \[\overrightarrow{C}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}\] be three non-zero vectors such that \[\overrightarrow{C}\] is a unit vector perpendicular to both the vectors \[\overrightarrow{A}\] and \[\overrightarrow{B}\] .If the angle between \[\overrightarrow{A}\] and \[\overrightarrow{B}\] is \[\frac{\pi }{6}\], then.

A. 0
B. 1
C. \[\frac{1}{4}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})(b_{1}^{2}+b_{3}^{2})\]
D. \[\frac{3}{4}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})(b_{1}^{2}+b_{2}^{2}+b_{3}^{2})(c_{1}^{2}+c_{3}^{2})\]
Answer» D. \[\frac{3}{4}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})(b_{1}^{2}+b_{2}^{2}+b_{3}^{2})(c_{1}^{2}+c_{3}^{2})\]
7391.

If \[\overrightarrow{OA}=\overrightarrow{a};\,\overrightarrow{OB}=\overrightarrow{b};\,\overrightarrow{OC}=2\overrightarrow{a}+3\overrightarrow{b};\] \[\overrightarrow{OD}=\overset{\to }{\mathop{a}}\,-2\text{ }\overset{\to }{\mathop{b}}\,,\]the length of \[\overrightarrow{OA}\] is three times the length of \[\overrightarrow{OB}\] and \[\overrightarrow{OA}\] is perpendicular to \[\overrightarrow{DB}\] then \[(\overrightarrow{BD}\times \overrightarrow{AC}).(\overrightarrow{OD}\times \overrightarrow{OC})\] is

A. \[7|\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,{{|}^{2}}\]
B. \[42|\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,{{|}^{2}}\]
C. 0
D. None of these
Answer» C. 0
7392.

If the middle points of sides BC, CA & AB of triangle ABC are respectively D, E, F then position vector of centre of triangle DEF, when position vector of A, B, C are respectively \[\hat{i}+\hat{j},\hat{j}+\hat{k},\hat{k}+\hat{i}\]is

A. \[\frac{1}{3}(\hat{i}+\hat{j}+\hat{k})\]
B. \[(\hat{i}+\hat{j}+\hat{k})\]
C. \[2(\hat{i}+\hat{j}+\hat{k})\]
D. \[\frac{2}{3}(\hat{i}+\hat{j}+\hat{k})\]
Answer» E.
7393.

The vector \[\overset{\to }{\mathop{c}}\,\] directed along the bisectors of the angle between the vectors \[\overset{\to }{\mathop{a}}\,=7\hat{i}-4\hat{j}-4\hat{k},\] \[\overset{\to }{\mathop{b}}\,=-2\hat{i}-\hat{j}+2\hat{k},\] and \[|\overset{\to }{\mathop{c}}\,|=3\sqrt{6}\] is given by

A. \[\hat{i}-7\hat{j}+2\hat{k}\]
B. \[\hat{i}+7\hat{j}-2\hat{k}\]
C. \[\hat{i}+7\hat{j}+2\hat{k}\]
D. \[\hat{i}+7\hat{j}+3\hat{k}\]
Answer» B. \[\hat{i}+7\hat{j}-2\hat{k}\]
7394.

If \[\vec{u},\vec{v},\vec{w}\] are non-coplanar vectors and p, q are real numbers, then the equality \[[3\vec{u}\,\,p\vec{v}\,\,p\vec{w}]-[p\vec{v}\,\vec{\omega }\,q\vec{u}]-[2\vec{\omega }\,q\vec{v}\,q\vec{u}]=0\] holds for:

A. Exactly two values of (p, q)
B. More than two but not all values of (p, q)
C. All values of (p, q)
D. Exactly one value of (p, q)
Answer» E.
7395.

Let \[\overset{\to }{\mathop{a}}\,,\text{ }\overset{\to }{\mathop{b}}\,\] and \[\overset{\to }{\mathop{c}}\,\] be three non-coplanar vectors, and let \[\overset{\to }{\mathop{p}}\,,\text{ }\overset{\to }{\mathop{q}}\,\] and \[\overset{\to }{\mathop{r}}\,\] be the vectors defined by the relations \[\overset{\to }{\mathop{p}}\,=\frac{\overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\,}{[\overset{\to }{\mathop{a}}\,\,\overset{\to }{\mathop{b}}\,\,\overset{\to }{\mathop{c}}\,]},\overset{\to }{\mathop{q}}\,=\frac{\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{a}}\,}{[\overset{\to }{\mathop{a}}\,\,\overset{\to }{\mathop{b}}\,\,\overset{\to }{\mathop{c}}\,]}\] and \[\overset{\to }{\mathop{r}}\,=\frac{\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,}{[\overset{\to }{\mathop{a}}\,\,\overset{\to }{\mathop{b}}\,\,\overset{\to }{\mathop{c}}\,]}.\] Then the value of the expression \[(\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,).\overset{\to }{\mathop{p}}\,+(\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,).\overset{\to }{\mathop{q}}\,+(\overset{\to }{\mathop{c}}\,+\overset{\to }{\mathop{a}}\,).\overset{\to }{\mathop{r}}\,\] is equal to

A. 0
B. 1
C. 2
D. 3
Answer» E.
7396.

If the vectors \[\alpha \hat{i}+\alpha \hat{j}+\gamma \hat{k},\text{ }\hat{i}+\hat{k}\] and \[\gamma \hat{i}+\gamma \hat{j}+\beta \hat{k}\] lie on a plane, where \[\alpha ,\beta \] and \[\gamma \] are distinct non-negative numbers, then \[\gamma \] is

A. Arithmetic mean of \[\alpha \] and \[\beta \]
B. Geometric mean of \[\alpha \] and \[\beta \]
C. Harmonic mean of \[\alpha \] and \[\beta \]
D. None of the above
Answer» C. Harmonic mean of \[\alpha \] and \[\beta \]
7397.

What is a vector of unit length orthogonal to both the vectors \[\hat{i}+\hat{j}+\hat{k}\] and\[2\hat{i}+3\hat{j}-\hat{k}\]?

A. \[\frac{-4\hat{i}+3\hat{j}-\hat{k}}{\sqrt{26}}\]
B. \[\frac{-4\hat{i}+3\hat{j}+\hat{k}}{\sqrt{26}}\]
C. \[\frac{-3\hat{i}+2\hat{j}-\hat{k}}{\sqrt{14}}\]
D. \[\frac{-3\hat{i}+2\hat{j}+\hat{k}}{\sqrt{14}}\]
Answer» C. \[\frac{-3\hat{i}+2\hat{j}-\hat{k}}{\sqrt{14}}\]
7398.

A force \[\vec{F}=3\hat{i}+2\hat{j}-4\hat{k}\] is applied at the point (1, -1, 2). What is the moment of the force about the point (2, -1, 3)?

A. \[\hat{i}+4\hat{j}+4\hat{k}\]
B. \[2\hat{i}+\hat{j}+2\hat{k}\]
C. \[2\hat{i}-7\hat{j}-2\hat{k}\]
D. \[2\hat{i}+4\hat{j}-\hat{k}\]
Answer» D. \[2\hat{i}+4\hat{j}-\hat{k}\]
7399.

If \[\vec{p}\] and \[\vec{q}\] are non-collinear unit vectors and \[\left| \vec{p}+\vec{q} \right|=\sqrt{3}\], then \[(2\vec{p}-3\vec{q})\cdot (3\vec{p}+\vec{q})\] is equal to

A. 0
B. \[\frac{1}{3}\]
C. \[-\frac{1}{3}\]
D. \[-\frac{1}{2}\]
Answer» E.
7400.

Let \[\overset{\to }{\mathop{p}}\,,\overset{\to }{\mathop{q}}\,,\overset{\to }{\mathop{r}}\,\] be three mutually perpendicular vectors of the same magnitude. If a vector \[\vec{x}\] satisfies the equation \[\overset{\to }{\mathop{p}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)\times \overset{\to }{\mathop{p}}\,\}+\overset{\to }{\mathop{q}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{r}}\,))\times \overset{\to }{\mathop{q}}\,\}\]\[+\overset{\to }{\mathop{r}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{p}}\,)\times \overset{\to }{\mathop{r}}\,\}=\overset{\to }{\mathop{0}}\,\] then \[\overset{\to }{\mathop{x}}\,\] is given by

A. \[\frac{1}{2}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,-2\overset{\to }{\mathop{r}}\,)\]
B. \[\frac{1}{2}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)\]
C. \[\frac{1}{3}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)\]
D. \[\frac{1}{3}(2\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,-\overset{\to }{\mathop{r}}\,)\]
Answer» C. \[\frac{1}{3}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)\]