Explore topic-wise MCQs in Digital Signal Processing.

This section includes 19 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing knowledge and support exam preparation. Choose a topic below to get started.

1.

What is the frequency response of the system described by the system function H(z)=\(\frac{1}{1-0.8z^{-1}}\)?

A. \(\frac{e^{jω}}{e^{jω}-0.8}\)
B. \(\frac{e^{jω}}{e^{jω}+0.8}\)
C. \(\frac{e^{-jω}}{e^{-jω}-0.8}\)
D. None of the mentioned
Answer» B. \(\frac{e^{jω}}{e^{jω}+0.8}\)
2.

An LTI system is characterized by its impulse response h(n)=(1/2)nu(n). What is the spectrum of the output signal when the system is excited by the signal x(n)=(1/4)nu(n)?

A. \(\frac{1}{(1-\frac{1}{2} e^{-jω})(1+\frac{1}{4} e^{-jω})}\)
B. \(\frac{1}{(1-\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\)
C. \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\)
D. \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1+\frac{1}{4} e^{-jω})}\)
Answer» C. \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\)
3.

The output of the Linear time invariant system cannot contain the frequency components that are not contained in the input signal.

A. True
B. False
Answer» B. False
4.

If an LTI system is described by the difference equation y(n)=ay(n-1)+bx(n), 0

A. \(5+0.888sin(\frac{π}{2}n-420)-1.06cos(πn-\frac{π}{4})\)
B. \(5+0.888sin(\frac{π}{2}n-420)+1.06cos(πn+\frac{π}{4})\)
C. \(5+0.888sin(\frac{π}{2}n-420)-1.06cos(πn+\frac{π}{4})\)
D. \(5+0.888sin(\frac{π}{2}n+420)-1.06cos(πn+\frac{π}{4})\)
Answer» D. \(5+0.888sin(\frac{π}{2}n+420)-1.06cos(πn+\frac{π}{4})\)
5.

If an LTI system is described by the difference equation y(n)=ay(n-1)+bx(n), 0 < a < 1, then what is the parameter ‘b’ so that the maximum value of |H(ω)| is unity?

A. a
B. 1-a
C. 1+a
D. none of the mentioned
Answer» C. 1+a
6.

What is the magnitude of the frequency response of the system described by the difference equation y(n)=ay(n-1)+bx(n), 0

A. \(\frac{|b|}{\sqrt{1+2acosω+a^2}}\)
B. \(\frac{|b|}{1-2acosω+a^2}\)
C. \(\frac{|b|}{1+2acosω+a^2}\)
D. \(\frac{|b|}{\sqrt{1-2acosω+a^2}}\)
Answer» E.
7.

What is the response of the system with impulse response h(n)=(1/2)nu(n) and the input signal x(n)=10-5sinπn/2+20cosπn?

A. 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ \frac{40}{3}cosπn\)
B. 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ 40cosπn\)
C. 20-\(\frac{10}{\sqrt{5}} sin(π/2n+26.60)+ \frac{40}{3cosπn}\)
D. None of the mentioned
Answer» B. 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ 40cosπn\)
8.

What is the magnitude of H(ω) for the three point moving average system whose output is given by y(n)=\(\frac{1}{3}[x(n+1)+x(n)+x(n-1)]\)?

A. \(\frac{1}{3}|1-2cosω|\)
B. \(\frac{1}{3}|1+2cosω|\)
C. |1-2cosω|
D. |1+2cosω|
Answer» C. |1-2cosω|
9.

If h(n) is the real valued impulse response sequence of an LTI system, then what is the phase of H(ω) in terms of HR(ω) and HI(ω)?

A. \(tan^{-1}\frac{H_R (ω)}{H_I (ω)}\)
B. –\(tan^{-1}\frac{H_R (ω)}{H_I (ω)}\)
C. \(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\)
D. –\(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\)
Answer» D. –\(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\)
10.

If h(n) is the real valued impulse response sequence of an LTI system, then what is the imaginary part of Fourier transform of the impulse response?

A. –\(\sum_{k=-∞}^∞ h(k) sin⁡ωk\)
B. \(\sum_{k=-∞}^∞ h(k) sin⁡ωk\)
C. –\(\sum_{k=-∞}^∞ h(k) cos⁡ωk\)
D. \(\sum_{k=-∞}^∞ h(k) cos⁡ωk\)
Answer» B. \(\sum_{k=-∞}^∞ h(k) sin⁡ωk\)
11.

If the Eigen function of an LTI system is x(n)= Aejnπ and the impulse response of the system is h(n)=(1/2)nu(n), then what is the Eigen value of the system?

A. 3/2
B. -3/2
C. -2/3
D. 2/3
Answer» E.
12.

What is the output sequence of the system with impulse response h(n)=(1/2)nu(n) when the input of the system is the complex exponential sequence x(n)=Aejnπ/2?

A. \(Ae^{j(\frac{nπ}{2}-26.6°)}\)
B. \(\frac{2}{\sqrt{5}} Ae^{j(\frac{nπ}{2}-26.6°)}\)
C. \(\frac{2}{\sqrt{5}} Ae^{j({nπ}{2}+26.6°)}\)
D. \(Ae^{j(\frac{nπ}{2}+26.6°)}\)
Answer» C. \(\frac{2}{\sqrt{5}} Ae^{j({nπ}{2}+26.6°)}\)
13.

If the system gives an output y(n)=H(ω)x(n) with x(n) = Aejωnas input signal, then x(n) is said to be Eigen function of the system.

A. True
B. False
Answer» B. False
14.

If x(n)=Aejωn is the input of an LTI system and h(n) is the response of the system, then what is the output y(n) of the system?

A. H(-ω)x(n)
B. -H(ω)x(n)
C. H(ω)x(n)
D. None of the mentioned
Answer» D. None of the mentioned
15.

IF_AN_LTI_SYSTEM_IS_DESCRIBED_BY_THE_DIFFERENCE_EQUATION_Y(N)=AY(N-1)+BX(N),_0_<_A_<_1,_THEN_WHAT_IS_THE_PARAMETER_‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚Àւ§B‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚ÀÖ¬•_SO_THAT_THE_MAXIMUM_VALUE_OF_|_H(‚ÂÀ√¨‚ÀÖ¬¢)|_IS_UNITY??$#

A. a
B. 1-a
C. 1+a
D. None of the mentioned
Answer» C. 1+a
16.

What is the magnitude of H(ω) for the three point moving average system whose output is given by y(n)=1/3[x(n+1)+x(n)+x(n-1)]?$

A. 1/[3|1-2cosω|].
B. 1/[3|1+2cosω|].
C. |1-2cosω|.
D. |1+2cosω|.
Answer» C. |1-2cos‚âà√¨‚àö¬¢|.
17.

If the Eigen function of an LTI system is x(n)= Aejnπ and the impulse response of the system is h(n)=(1/2)nu(n), then what is the Eigen value of the system?$

A. 3/2
B. -3/2
C. -2/3
D. 2/3
Answer» E.
18.

If the system gives an output y(n)=H(ω)x(n) with x(n)= Aejωnas input signal, then x(n) is said to be Eigen function of the system.$

A. True
B. False
Answer» B. False
19.

If x(n)=Aejωn is the input of an LTI system and h(n) is the response of the system, then what is the output y(n) of the system?

A. H(-ω)x(n)
B. -H(ω)x(n)
C. H(ω)x(n)
D. None of the mentioned
Answer» D. None of the mentioned