

MCQOPTIONS
Saved Bookmarks
This section includes 19 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing knowledge and support exam preparation. Choose a topic below to get started.
1. |
What is the frequency response of the system described by the system function H(z)=\(\frac{1}{1-0.8z^{-1}}\)? |
A. | \(\frac{e^{jω}}{e^{jω}-0.8}\) |
B. | \(\frac{e^{jω}}{e^{jω}+0.8}\) |
C. | \(\frac{e^{-jω}}{e^{-jω}-0.8}\) |
D. | None of the mentioned |
Answer» B. \(\frac{e^{jω}}{e^{jω}+0.8}\) | |
2. |
An LTI system is characterized by its impulse response h(n)=(1/2)nu(n). What is the spectrum of the output signal when the system is excited by the signal x(n)=(1/4)nu(n)? |
A. | \(\frac{1}{(1-\frac{1}{2} e^{-jω})(1+\frac{1}{4} e^{-jω})}\) |
B. | \(\frac{1}{(1-\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\) |
C. | \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\) |
D. | \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1+\frac{1}{4} e^{-jω})}\) |
Answer» C. \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\) | |
3. |
The output of the Linear time invariant system cannot contain the frequency components that are not contained in the input signal. |
A. | True |
B. | False |
Answer» B. False | |
5. |
If an LTI system is described by the difference equation y(n)=ay(n-1)+bx(n), 0 < a < 1, then what is the parameter ‘b’ so that the maximum value of |H(ω)| is unity? |
A. | a |
B. | 1-a |
C. | 1+a |
D. | none of the mentioned |
Answer» C. 1+a | |
7. |
What is the response of the system with impulse response h(n)=(1/2)nu(n) and the input signal x(n)=10-5sinπn/2+20cosπn? |
A. | 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ \frac{40}{3}cosπn\) |
B. | 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ 40cosπn\) |
C. | 20-\(\frac{10}{\sqrt{5}} sin(π/2n+26.60)+ \frac{40}{3cosπn}\) |
D. | None of the mentioned |
Answer» B. 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ 40cosπn\) | |
8. |
What is the magnitude of H(ω) for the three point moving average system whose output is given by y(n)=\(\frac{1}{3}[x(n+1)+x(n)+x(n-1)]\)? |
A. | \(\frac{1}{3}|1-2cosω|\) |
B. | \(\frac{1}{3}|1+2cosω|\) |
C. | |1-2cosω| |
D. | |1+2cosω| |
Answer» C. |1-2cosω| | |
9. |
If h(n) is the real valued impulse response sequence of an LTI system, then what is the phase of H(ω) in terms of HR(ω) and HI(ω)? |
A. | \(tan^{-1}\frac{H_R (ω)}{H_I (ω)}\) |
B. | –\(tan^{-1}\frac{H_R (ω)}{H_I (ω)}\) |
C. | \(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\) |
D. | –\(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\) |
Answer» D. –\(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\) | |
10. |
If h(n) is the real valued impulse response sequence of an LTI system, then what is the imaginary part of Fourier transform of the impulse response? |
A. | –\(\sum_{k=-∞}^∞ h(k) sinωk\) |
B. | \(\sum_{k=-∞}^∞ h(k) sinωk\) |
C. | –\(\sum_{k=-∞}^∞ h(k) cosωk\) |
D. | \(\sum_{k=-∞}^∞ h(k) cosωk\) |
Answer» B. \(\sum_{k=-∞}^∞ h(k) sinωk\) | |
11. |
If the Eigen function of an LTI system is x(n)= Aejnπ and the impulse response of the system is h(n)=(1/2)nu(n), then what is the Eigen value of the system? |
A. | 3/2 |
B. | -3/2 |
C. | -2/3 |
D. | 2/3 |
Answer» E. | |
12. |
What is the output sequence of the system with impulse response h(n)=(1/2)nu(n) when the input of the system is the complex exponential sequence x(n)=Aejnπ/2? |
A. | \(Ae^{j(\frac{nπ}{2}-26.6°)}\) |
B. | \(\frac{2}{\sqrt{5}} Ae^{j(\frac{nπ}{2}-26.6°)}\) |
C. | \(\frac{2}{\sqrt{5}} Ae^{j({nπ}{2}+26.6°)}\) |
D. | \(Ae^{j(\frac{nπ}{2}+26.6°)}\) |
Answer» C. \(\frac{2}{\sqrt{5}} Ae^{j({nπ}{2}+26.6°)}\) | |
13. |
If the system gives an output y(n)=H(ω)x(n) with x(n) = Aejωnas input signal, then x(n) is said to be Eigen function of the system. |
A. | True |
B. | False |
Answer» B. False | |
14. |
If x(n)=Aejωn is the input of an LTI system and h(n) is the response of the system, then what is the output y(n) of the system? |
A. | H(-ω)x(n) |
B. | -H(ω)x(n) |
C. | H(ω)x(n) |
D. | None of the mentioned |
Answer» D. None of the mentioned | |
15. |
IF_AN_LTI_SYSTEM_IS_DESCRIBED_BY_THE_DIFFERENCE_EQUATION_Y(N)=AY(N-1)+BX(N),_0_<_A_<_1,_THEN_WHAT_IS_THE_PARAMETER_‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚Àւ§B‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚ÀÖ¬•_SO_THAT_THE_MAXIMUM_VALUE_OF_|_H(‚ÂÀ√¨‚ÀÖ¬¢)|_IS_UNITY??$# |
A. | a |
B. | 1-a |
C. | 1+a |
D. | None of the mentioned |
Answer» C. 1+a | |
16. |
What is the magnitude of H(ω) for the three point moving average system whose output is given by y(n)=1/3[x(n+1)+x(n)+x(n-1)]?$ |
A. | 1/[3|1-2cosω|]. |
B. | 1/[3|1+2cosω|]. |
C. | |1-2cosω|. |
D. | |1+2cosω|. |
Answer» C. |1-2cos‚âà√¨‚àö¬¢|. | |
17. |
If the Eigen function of an LTI system is x(n)= Aejnπ and the impulse response of the system is h(n)=(1/2)nu(n), then what is the Eigen value of the system?$ |
A. | 3/2 |
B. | -3/2 |
C. | -2/3 |
D. | 2/3 |
Answer» E. | |
18. |
If the system gives an output y(n)=H(ω)x(n) with x(n)= Aejωnas input signal, then x(n) is said to be Eigen function of the system.$ |
A. | True |
B. | False |
Answer» B. False | |
19. |
If x(n)=Aejωn is the input of an LTI system and h(n) is the response of the system, then what is the output y(n) of the system? |
A. | H(-ω)x(n) |
B. | -H(ω)x(n) |
C. | H(ω)x(n) |
D. | None of the mentioned |
Answer» D. None of the mentioned | |