Explore topic-wise MCQs in Geotechnical Engineering.

This section includes 180 Mcqs, each offering curated multiple-choice questions to sharpen your Geotechnical Engineering knowledge and support exam preparation. Choose a topic below to get started.

101.

The vertical stress distribution diagram on a horizontal plane due to a concentrated load is known as the influence diagram if the load is ______

A. zero
B. unity
C. two units
D. three units
Answer» C. two units
102.

In one-dimensional consolidation, secondary consolidation is __________

A. considered at the start of test
B. considered at the middle of test
C. considered at the end of test
D. disregarded
Answer» E.
103.

The component τₓᵧ denotes ___________

A. normal stress in x-direction
B. normal stress perpendicular to y-axis
C. shear stress acting perpendicular to x-axis
D. shear stress acting perpendicular to y-axis
Answer» D. shear stress acting perpendicular to y-axis
104.

In the generalised Hook’s law equation, εₓ=C₁₁σₓ+ C₁₂ (σᵧ+σz), the constant C₁₂ is __________

A. E
B. 1/E
C. –μ/E
D. μ
Answer» D. μ
105.

The Boussinesq influence factor is given by ____________

A. \(K_B=\frac{3Q}{2πz} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{5/2}\)
B. \(K_B=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\)
C. \(K_B=\frac{3}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\)
D. \(K_B=\frac{3}{2πz} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\)
Answer» D. \(K_B=\frac{3}{2πz} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\)
106.

In Terzaghi’s Theory of one dimensional consolidation, the time lag in consolidation is ___________

A. due to permeability of soil and viscosity of water or fluid
B. due entirely to seepage pressure of water
C. due entirely to permeability of soil
D. due entirely to viscosity of water or fluid
Answer» D. due entirely to viscosity of water or fluid
107.

The Boussinesq equation representing the vertical stress is ___________

A. \(σ_z=\frac{3}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{5/2}\)
B. \(σ_z=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^5\)
C. \(σ_z=\frac{3Q}{2πz^2}\left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\)
D. \(σ_z=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^2\)
Answer» D. \(σ_z=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^2\)
108.

The Newmark’s influence chart consists of _________

A. a single circle only
B. a number of circles and radiating lines
C. bar diagram
D. small rectangular unit areas
Answer» C. bar diagram
109.

Body forces are _________

A. external forces at boundaries of body
B. internal forces at boundaries of body
C. forces only on one side in internal of the body
D. forces distributed throughout the volume of the body
Answer» E.
110.

The range of Poisson’s ratio μ for loess is _________

A. 0.1-0.3
B. 0.4-0.5
C. 0.3-0.35
D. 0.9-1
Answer» B. 0.4-0.5
111.

The modulus of elasticity in MPa for very soft clay is __________

A. 2-15
B. 15-60
C. 50-81
D. 100-200
Answer» B. 15-60
112.

___________ is an example of surface force.

A. inertia force
B. gravitational force
C. magnetic force
D. hydrostatic force
Answer» E.
113.

The Westergaard’s influence factor is given by _____________

A. \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
B. \(K_W=\frac{Q}{z^2} \)
C. \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{5}{2}} \frac{Q}{z^2} \)
D. \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^3}\frac{Q}{z^2} \)
Answer» B. \(K_W=\frac{Q}{z^2} \)
114.

The compatibility equation in terms of plane stress case is given by ________

A. \((\frac{∂^2}{∂x^2} +\frac{∂^2}{∂z^2})=0\)
B. \((\frac{∂^2}{∂y^2} +\frac{∂^2}{∂z^2})(σ_y+σ_z )=0\)
C. \((\frac{∂^2}{∂x^2} +\frac{∂^2}{∂y^2})(σ_x+σ_y )=0\)
D. \((\frac{∂^2}{∂x^2} +\frac{∂^2}{∂z^2})(σ_x+σ_z )=0\)
Answer» E.
115.

The number of independent elastic constant is ______

A. 2
B. 5
C. 0
D. 6
Answer» B. 5
116.

For both plane stress as well as plain strain case the equilibrium equation in z-direction is _______

A. \(\frac{∂τ_{xz}}{∂x}+\frac{∂σ_z}{∂z}+γ=0\)
B. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{zx}}{∂z}+γ=1\)
C. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y}+γ=0\)
D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{zx}}{∂z}=0\)
Answer» B. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{zx}}{∂z}+γ=1\)
117.

An isobar is a curve connecting all points of _______ below the ground.

A. equal vertical pressure
B. unequal vertical pressure
C. equal horizontal pressure
D. unequal horizontal pressure
Answer» B. unequal vertical pressure
118.

When the maximum vertical stress \((σ_z)_{max}=\frac{0.0888Q}{r^2}\) at a point, the shear stress at that point is ____________

A. \(τ_{rz}=\frac{0.0888Q}{r^2} \)
B. \(τ_{rz}=\frac{0.0725Q}{r^2} \)
C. \(τ_{rz}=\frac{0.234Q}{r^2} \)
D. \(τ_{rz}=\frac{0.328Q}{r^2} \)
Answer» C. \(τ_{rz}=\frac{0.234Q}{r^2} \)
119.

The problem of elasticity is _________

A. strictly determinate
B. strictly indeterminate
C. in some cases indeterminate
D. cannot be classified as determinate or indeterminate
Answer» C. in some cases indeterminate
120.

In simple radial distribution, the three stress components σr, σθ and τrθ are given by ___________

A. \(σ_r=K \frac{Q cos⁡θ}{r}, σ_θ=0 \,and\, τ_{rθ}=0 \)
B. σr=KQ, σθ=0 and τrθ=0
C. \(σ_r=\frac{Q cos⁡θ}{r}, σ_θ=0 \,and\, τ_{rθ}=0\)
D. σr=0, σθ=0 and τrθ= 0
Answer» B. σr=KQ, σθ=0 and τrθ=0
121.

If the r/z ratio is unity, then the vertical pressure on a horizontal plane is given by _________

A. \(σ_z=\frac{0.56Q}{z^3} \)
B. \(σ_z=\frac{0.0844Q}{z^2} \)
C. \(σ_z=\frac{0.2733Q}{z^2} \)
D. \(σ_z=\frac{0.4775Q}{z^2} \)
Answer» C. \(σ_z=\frac{0.2733Q}{z^2} \)
122.

The equilibrium equation obtained by summing all forces on z-direction is ________

A. \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\)
B. \(\frac{∂τ_{xy}}{∂x} + \frac{∂σ_y}{∂y} +\frac{∂τ_{zy}}{∂z}+Y=0\)
C. \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\)
D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\)
Answer» D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\)
123.

The compatibility equations are results of application of stress equations.

A. True
B. False
C. May be True or False
D. Can't say
Answer» C. May be True or False
124.

The rate of change of velocity along the depth of layer is ___________

A. \(\frac{∂v}{∂z}=\frac{1}{γ_w}\frac{∂^2 \overline{u}}{∂z^2}\)
B. \(\frac{∂v}{∂z}=\frac{k}{γ_w}\frac{\overline{u}}{∂z^2} \)
C. \(\frac{∂v}{∂z}=\frac{∂^2\overline{u}}{∂z^2}\)
D. \(\frac{∂v}{∂z}=\frac{k}{γ_w}\frac{∂^2 \overline{u}}{∂z^2}\)
Answer» E.
125.

What will be the intensity of vertical stress at a depth of 4m directly below the concentrated load of 20 kN?

A. 0.4356 kN/m²
B. 0.244 kN/m²
C. 0.652 kN/m²
D. 0.597 kN/m²
Answer» E.
126.

The strain tensor is given by ____________

A. \begin{pmatrix} 1/2Γ_{xz} & 1/2Γ_{xy} & ε_{xx} \\ 1/2Γ_{yx} & 1/2Γ_{yz} & ε_{yy} \\ 1/2Γ_{zx} & 1/2Γ_{zy} & ε_{zz} \end{pmatrix}
B. \begin{pmatrix} 1/2Γ_{xy} & ε_{xx} & 1/2Γ_{xz} \\ 1/2Γ_{yx} & ε_{yy} & 1/2Γ_{yz} \\ 1/2Γ_{zy} & ε_{zz} & 1/2Γ_{zz} \end{pmatrix}
C. \begin{pmatrix} ε_{xx} & 1/2Γ_{xy} & 1/2Γ_{xz} \\ 1/2Γ_{yx} & ε_{yy} & 1/2Γ_{yz} \\ 1/2Γ_{zx} & 1/2Γ_{zy} & ε_{zz} \end{pmatrix}
D. \begin{pmatrix} ε_{xx} & 1/2Γ_{xy} & 1/2Γ_{xz} \\ ε_{yy} & 1/2Γ_{yx} & 1/2Γ_{yz} \\ ε_{zz} & 1/2Γ_{zy} & 1/2Γ_{zx} \end{pmatrix}
Answer» D. \begin{pmatrix} ε_{xx} & 1/2Γ_{xy} & 1/2Γ_{xz} \\ ε_{yy} & 1/2Γ_{yx} & 1/2Γ_{yz} \\ ε_{zz} & 1/2Γ_{zy} & 1/2Γ_{zx} \end{pmatrix}
127.

For a linearly variable infinite load, for a point P, the vertical stress σz is _________

A. \(σ_z=\frac{q}{aπ} \left[xα+z\right] \)
B. \(σ_z=\frac{q}{aπ} \)
C. \(σ_z=\frac{q}{π}\left[\frac{az}{a^2+z^2}\right] \)
D. \(σ_z=\left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \)
Answer» B. \(σ_z=\frac{q}{aπ} \)
128.

For a symmetrically distributed triangular load, the shear stress τxz at any point at a depth z is given by ___________

A. \(τ_{xz}=-\frac{qz}{aπ} \left[α_1-α_2 \right] \)
B. \(τ_{xz}=-\frac{q}{π} \left[α_1+α_2 \right]\)
C. \(τ_{xz}=-\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\)
D. \(τ_{xz}=-\frac{q}{π} \left[α_1-α_2 \right] \)
Answer» B. \(τ_{xz}=-\frac{q}{π} \left[α_1+α_2 \right]\)
129.

If z-axis is considered to be directed downward from ground surface, then the stress component in y-axis at a point at a depth z due to self weight of soil above it is ___________

A. \(σ_y=\frac{1}{1-μ}γz\)
B. σy=μγz
C. \(σ_y=\frac{μ}{1-μ}\)
D. \(σ_y=\frac{μ}{1-μ}γz \)
Answer» E.
130.

An isobar diagram consists of __________

A. family of isobars of various intensities
B. single isobar only
C. two isobars only
D. isobars of same intensities
Answer» B. single isobar only
131.

The vertical stress is proportional to __________

A. \(\frac{z^2}{K_B} \)
B. \(\frac{K_B}{z^2} \)
C. \(\frac{K_B}{z^3} \)
D. \(\frac{z^3}{K_B} \)
Answer» C. \(\frac{K_B}{z^3} \)
132.

The zone of soil in isobar is called __________

A. stress diagram
B. contour
C. pressure bulb
D. isotherm
Answer» D. isotherm
133.

The rate of change of pore water pressure along the depth of layer represents ____________

A. seepage pressure
B. seepage stress
C. hydraulic gradient
D. permeability of the soil
Answer» D. permeability of the soil
134.

The equilibrium equations in terms of total stresses formed by summing all forces on x-direction is ________

A. \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\)
B. \(\frac{∂τ_{xy}}{∂x} + \frac{∂σ_y}{∂y} +\frac{∂τ_{zy}}{∂z}+Y=0\)
C. \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\)
D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\)
Answer» E.
135.

Contact pressure can be called scratch hardness only in case of __________

A. elastic contact
B. semi-elastic contact
C. plastic contact
D. semi-plastic contact
Answer» D. semi-plastic contact
136.

Contact pressure is between __________

A. base of footing and underlying soil mass
B. wall and column
C. slab and wall
D. wall and beam
Answer» B. wall and column
137.

The compatibility equation in terms of stress components in polar coordinates are given by ____________

A. \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=0\)
B. \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_θ )=0\)
C. \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r )=0\)
D. \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=1\)
Answer» B. \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_θ )=0\)
138.

Find the influence factor for the vertical pressure at depth 5m for a uniformly loaded circular area of 80 kN/m² load and radius of 1m.

A. 0.6212
B. 0.0571
C. 0.0328
D. 0.0624
Answer» C. 0.0328
139.

When there is no eternal loading, the principal is _______

A. 5m below ground plane
B. ground plane
C. 10m below ground plane
D. at infinity
Answer» C. 10m below ground plane
140.

When the ground is horizontal, \(α=\frac{π}{2}\) in constant K. What will be the radial stress σᵣ due to inclined line load at the horizontal ground surface?

A. \(σ_r=\frac{Q cos⁡θ}{r}\)
B. \(σ_r=\frac{2Q cos(θ-β)}{πr}\)
C. \(σ_r=\frac{Q sin⁡θ}{r}\)
D. \(σ_r=\frac{2Q sin⁡θ}{r}\)
Answer» C. \(σ_r=\frac{Q sin⁡θ}{r}\)
141.

The total independent stresses at a point are _________

A. 3
B. 6
C. 9
D. 12
Answer» C. 9
142.

The equilibrium equation in X-direction in terms of effected stress for a saturated soil body is given by __________

A. \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}=0\)
B. \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y{‘}}{∂y}+\frac{∂τ_{zy}}{∂z}+γ_w \frac{∂h}{∂x}=0\)
C. \(\frac{∂τ_{xz}}{∂x}+\frac{∂τ_{yz}}{∂y}+\frac{∂σ_z{‘}}{∂z}+γ_w \frac{∂h}{∂x}=0\)
D. \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}+γ_w \frac{∂h}{∂x}=0\)
Answer» E.
143.

For point P under the support A, the vertical stress is given by __________

A. \(σ_z=\frac{q}{aπ} [xα(x-α)] \)
B. \(σ_z=\frac{q}{aπ} \)
C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right] \)
D. \(σ_z=\left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \)
Answer» D. \(σ_z=\left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \)
144.

If a UDL of 70 kN/m² is acting at a rectangular area of 25 m², then the contact pressure is _______

A. 51kN/m²
B. 54 kN/m²
C. 80 kN/m²
D. 70 kN/m²
Answer» E.
145.

The stress component in x-direction on a horizontal plane in Cartesian coordinates for horizontal line load is ___________

A. \(σ_x=\frac{2Q}{xzsinθcos⁡θ} \)
B. \(σ_x=\frac{2Qxz^2}{π(x^2+z^2)^2} \)
C. \(σ_x=\frac{2Qx^3}{π(x^2+z^2)^2} \)
D. \(σ_x=\frac{2Qx^2 z}{π(x^2+z^2)^2} \)
Answer» D. \(σ_x=\frac{2Qx^2 z}{π(x^2+z^2)^2} \)
146.

For a symmetrically distributed triangular load, under the centre of the triangular load, the vertical stress at any point at a depth z is given by ___________

A. \(σ_z=\frac{q}{aπ} \left[α_1+α_2 \right] \)
B. \(σ_z=\frac{q}{π} \left[α_1+α_2 \right]\)
C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\)
D. \(σ_z=\frac{q}{π} \left[α_1-α_2 \right]\)
Answer» C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\)
147.

If w is the displacement in z-direction, the linear strain component in is defined by __________

A. \(ε_Z=\frac{∂w}{∂z}\)
B. \(ε_Z=\frac{∂z}{∂w}\)
C. \(ε_Z=\frac{dz}{dw}\)
D. εz=z+w
Answer» B. \(ε_Z=\frac{∂z}{∂w}\)
148.

The shear stress τxz in terms of stress function is given by __________

A. \(\frac{∂Φ}{∂z}-γx\)
B. \(-\frac{∂^2Φ}{∂x∂z}-γx\)
C. \(\frac{∂^2Φ}{∂x^2} -γx\)
D. \(\frac{∂Φ}{∂x}-γx\)
Answer» C. \(\frac{∂^2Φ}{∂x^2} -γx\)
149.

When the ground is horizontal, \(α=\frac{π}{2}\) in constant K. What will be the radial stress σᵣ due to vertical line load?

A. \(σ_r=\frac{Q cos⁡θ}{r}\)
B. \(σ_r=\frac{2Q cos⁡θ}{πr}\)
C. \(σ_r=\frac{Q sin⁡θ}{r}\)
D. \(σ_r=\frac{2Q sin⁡θ}{r}\)
Answer» C. \(σ_r=\frac{Q sin⁡θ}{r}\)
150.

The vertical stress under the corner of a uniformly loaded rectangular area of size a, b at depth z and m=a/z, n=b/z is given by ___________

A. \(σ_z=\frac{2q’}{πz}\frac{1}{\left[1+(\frac{x}{z})^2\right]^2}\)
B. \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}\right] \)
C. \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}⁡\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
D. \(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
Answer» D. \(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)