Explore topic-wise MCQs in Geotechnical Engineering.

This section includes 180 Mcqs, each offering curated multiple-choice questions to sharpen your Geotechnical Engineering knowledge and support exam preparation. Choose a topic below to get started.

51.

The generalised Hooke’s law equation connecting the strain to stress contains ___________ elastic constants.

A. 40
B. 36
C. 39
D. 38
Answer» C. 39
52.

The stresses due to self weight of the soil are known as ______________

A. geostatic stresses
B. boundary stresses
C. external stresses
D. boundary strain
Answer» B. boundary stresses
53.

If θ is the apex angle which the line joining the apex makes with the outer edge of the loading of a circular area, then the Boussinesq’s vertical pressure σz under a uniformly loaded circular area is given by ______________

A. σz=q[1-sin³θ]
B. σz=q[1-cos³θ]
C. σz=q[1-tan³θ]
D. σz=q[1-cos²θ]
Answer» C. σz=q[1-tan³θ]
54.

In Terzaghi’s Theory of one dimensional consolidation, the boundary is considered to be __________

A. free surface offering resistance to flow of water
B. free surface offering no resistance to flow of water
C. fixed surface offering resistance to flow of water
D. curved surface offering resistance to water flow
Answer» C. fixed surface offering resistance to flow of water
55.

In Terzaghi’s Theory of one dimensional consolidation, soil is restrained against lateral deformation.

A. True
B. False
C. May be True or False
D. Can't say
Answer» B. False
56.

If r/z ratio is 2 and load of 20 kN is acting at a point, then the vertical pressure at a depth 6m is ____________

A. 0.4356 kN/m²
B. 0.244 kN/m²
C. 0.1518 kN/m²
D. 4.72*10¯³ kN/m²
Answer» E.
57.

If a footing has a dimension of 1m*1m and load transfer of 20 kN, then the contact pressure is _______________

A. 20 kN/m²
B. 30 kN/m²
C. 50 kN/m²
D. 70 kN/m²
Answer» B. 30 kN/m²
58.

If the contact pressure is 14 kN/m², then find the load for 50 m².

A. 500kN
B. 600kN
C. 700kN
D. 800kN
Answer» D. 800kN
59.

For a uniformly loaded rectangular area, the Newmark’s influence factor given by ___________

A. \(K= \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
B. \(K= \frac{1}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
C. \(K= \frac{1}{4π}\)
D. \(K= \frac{q}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
Answer» C. \(K= \frac{1}{4π}\)
60.

When the maximum vertical stress is 0.235 kN/m² at a radial distance of 4m from the point load is __________ kN.

A. 42.34
B. 10.56
C. 20.76
D. 30.65
Answer» B. 10.56
61.

The maximum vertical stress is _______ when a concentrated load of 20 kN acts at a radial distance of 2m.

A. 0.444 kN/m²
B. 0.555 kN/m²
C. 0.666 kN/m²
D. 0.777 kN/m²
Answer» B. 0.555 kN/m²
62.

The stress function was introduced by __________

A. G.B Airy
B. Terzaghi
C. Darcy
D. Meyerhof
Answer» B. Terzaghi
63.

The equilibrium equation in polar coordinates is given by _____________

A. \(\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}+\frac{σ_r-σ_θ}{r}=0\)
B. \(\frac{∂σ_r}{∂r}+\frac{∂τ_{rθ}}{∂θ}+\frac{σ_r-σ_θ}{r}=0\)
C. \(\frac{∂σ_r}{∂r}+\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}+\frac{σ_r-σ_θ}{r}=0\)
D. \(\frac{∂σ_r}{∂r}+\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}=0\)
Answer» D. \(\frac{∂σ_r}{∂r}+\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}=0\)
64.

The influence factor for the vertical stress under the corner of a uniformly loaded rectangular area of size 1m*2m at depth 5m and load of 80 kN/m² is given by ___________

A. 0.6212
B. 0.7465
C. 0.0328
D. 0.0624
Answer» D. 0.0624
65.

The Westergaard’s equation is given by ___________

A. \(σ_z=\frac{1}{\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
B. \(σ_z=\frac{1}{2\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
C. \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}}\frac{Q}{z^2} \)
D. \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
Answer» D. \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
66.

The equilibrium equation in Z-direction in terms of effected stress for a saturated soil body is given by __________

A. \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}++γ_w \frac{∂h}{∂z}=0\)
B. \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y{‘}}{∂y}+\frac{∂τ_{zy}}{∂z}+γ_w \frac{∂h}{∂z}=0\)
C. \(\frac{∂τ_{xz}}{∂x}+\frac{∂τ_{yz}}{∂y}+\frac{∂σ_z{‘}}{∂z}+γ’+γ_w \frac{∂h}{∂z}=0\)
D. \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}=0\)
Answer» D. \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}=0\)
67.

The matrix form of the boundary condition equations is _____________

A. \(\begin{bmatrix} \overline{X}\\ \overline{Y}\\ \overline{Z} \end{bmatrix} = \begin{bmatrix} σ_{xx} & τ_{xy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{zz} \end{bmatrix} \begin{bmatrix} l \\ m \\ n \end{bmatrix}\)
B. \(\begin{bmatrix} \overline{X}\\ \overline{Y}\\ \overline{Z} \end{bmatrix} = \begin{bmatrix} σ_{zz} & τ_{xy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{xx} \end{bmatrix} \begin{bmatrix} l \\ m \\ n \end{bmatrix}\)
C. \(\begin{bmatrix} \overline{X}\\ \overline{Y}\\ \overline{Z} \end{bmatrix} = \begin{bmatrix} σ_{xx} & τ_{zz} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{zz} \end{bmatrix} \begin{bmatrix} l \\ m \\ n \end{bmatrix}\)
D. \(\begin{bmatrix} \overline{X}\\ \overline{Y}\\ \overline{Z} \end{bmatrix} = \begin{bmatrix} σ_{xx} & τ_{yy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{yy} & σ_{zz} \end{bmatrix} \begin{bmatrix} l \\ m \\ n \end{bmatrix}\)
Answer» B. \(\begin{bmatrix} \overline{X}\\ \overline{Y}\\ \overline{Z} \end{bmatrix} = \begin{bmatrix} σ_{zz} & τ_{xy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{xx} \end{bmatrix} \begin{bmatrix} l \\ m \\ n \end{bmatrix}\)
68.

For any position of point P subtending angle α with AB, the vertical stress is given by___________

A. \(σ_z=\frac{q}{aπ} [xα(x-α)] \)
B. \(σ_z=\frac{q}{aπ} \)
C. \(σ_z=\frac{q}{aπ}\left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \)
D. \(σ_z= \left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \)
Answer» D. \(σ_z= \left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \)
69.

The radial stress component σᵣ due to inclined line load of intensity Q per unit length is given by ___________

A. \(σ_r=\frac{2Q}{r}(\frac{cosβcosθ}{2α+sin2α})\)
B. \(σ_r=\frac{2Q}{r} (\frac{cosβcosθ}{2α+sin2α}+\frac{sinβsinθ}{2α-sin2α})\)
C. \(σ_r=\frac{Q}{r} (\frac{cosβcosθ}{2α+sin2α}+\frac{sinβsinθ}{2α-sin2α})\)
D. \(σ_r=\frac{2Q}{r}(\frac{sinβsinθ}{2α-sin2α})\)
Answer» C. \(σ_r=\frac{Q}{r} (\frac{cosβcosθ}{2α+sin2α}+\frac{sinβsinθ}{2α-sin2α})\)
70.

For point P under the support B, the vertical stress is given by __________

A. \(σ_z=\frac{q}{aπ} [xα(x-α)] \)
B. \(σ_z=\frac{q}{π}α_B \)
C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right] \)
D. \(σ_z=\left[xα_B-\frac{az}{(x-α_B )^2+z^2}(x-α_B)\right] \)
Answer» C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right] \)
71.

For a triangular and uniformly distributed semi-infinite loads, the shear stress τxz in the plane xz is ___________

A. \(τ_{xz}=-\frac{qz}{aπ} α \)
B. \(τ_{xz}=-\frac{q}{π} α\)
C. \(τ_{xz}=-\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\)
D. \(τ_{xz}=-\frac{q}{π} z\)
Answer» B. \(τ_{xz}=-\frac{q}{π} α\)
72.

The maximum shear stress is the difference between major and minor principal stresses.

A. True
B. False
C. May be True or False
D. Can't say
Answer» C. May be True or False
73.

Trapezoidal load is encountered in earth fills.

A. True
B. False
C. May be True or False
D. Can't say
Answer» B. False
74.

The triangular load is also known as ___________

A. uniformly distributed load
B. uniformly varying load
C. point load
D. equivalent uniformly distributed load
Answer» C. point load
75.

The equilibrium equations in terms of total stresses formed by summing all forces on y-direction is ________

A. \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\)
B. \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y}{∂y}+\frac{∂τ_{zy}}{∂z}=0\)
C. \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\)
D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\)
Answer» C. \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\)
76.

The greatest value of maximum shear stress τmax occurs when angle θ is _________

A. π
B. π/2
C. π/3
D. π/4
Answer» C. π/3
77.

The three equations of static equilibrium of the problem of elasticity are not sufficient to solve the six unknown stress components.

A. True
B. False
C. May be True or False
D. Can't say
Answer» B. False
78.

The following diagram represents the contact pressure of __________

A. real elastic material
B. intermediate soil
C. cohesionless soil
D. gravel
Answer» D. gravel
79.

The following diagram represents the contact pressure of __________

A. real elastic material
B. intermediate soil
C. cohesionless soil
D. gravel
Answer» C. cohesionless soil
80.

In simple radial distribution, if \(σ_r=K \frac{Q cos⁡θ}{r},\) then the value of K is ________

A. K=\(\frac{2}{2α+sin2α}\)
B. K=2α+sinα
C. K=2α-sinα
D. K=sinα
Answer» B. K=2α+sinα
81.

The component τyz denotes ________

A. normal stress in x-direction
B. normal stress perpendicular to y-axis
C. normal acting perpendicular to x-axis
D. shear stress acting perpendicular to y-axis
Answer» E.
82.

The component σz denotes __________

A. normal stress in x-direction
B. normal stress acting perpendicular to z-axis
C. shear stress acting perpendicular to z-axis
D. shear stress acting perpendicular to y-axis
Answer» C. shear stress acting perpendicular to z-axis
83.

In a stress tensor, each stress component in it is represented by__________

A. magnitude only
B. direction only
C. both magnitude and direction
D. opposite direction
Answer» D. opposite direction
84.

The equilibrium equation obtained by summing all forces on y-direction is ________

A. \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\)
B. \(\frac{∂τ_{xy}}{∂x} + \frac{∂σ_y}{∂y} +\frac{∂τ_{zy}}{∂z}+Y=0\)
C. \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\)
D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\)
Answer» C. \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\)
85.

The equilibrium equation obtained by summing all forces on x-direction is ________

A. \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\)
B. \(\frac{∂τ_{xy}}{∂x} + \frac{∂σ_y}{∂y} +\frac{∂τ_{zy}}{∂z}+Y=0\)
C. \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\)
D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\)
Answer» B. \(\frac{∂τ_{xy}}{∂x} + \frac{∂σ_y}{∂y} +\frac{∂τ_{zy}}{∂z}+Y=0\)
86.

At a point there are ______ shear stresses.

A. 2
B. 4
C. 6
D. 8
Answer» D. 8
87.

There are _______ independent shearing stresses.

A. 2
B. 3
C. 6
D. 8
Answer» C. 6
88.

For a load intensity of q=20kN/m, find the shear stress τxz at a depth 5m from the given diagram.

A. -5.2 kN/m²
B. -6.2 kN/m²
C. -7.2 kN/m²
D. -8.2 kN/m²
Answer» C. -7.2 kN/m²
89.

For a load intensity of q=20kN/m, find the vertical stress σz from the given diagram.

A. 5.62 kN/m²
B. 6.23 kN/m²
C. 13.33 kN/m²
D. 8.32 kN/m²
Answer» D. 8.32 kN/m²
90.

For a triangular and uniformly distributed semi-infinite loads, the vertical stress σz is given by ___________

A. \(σ_z=\frac{q}{aπ}[xα+z] \)
B. \(σ_z=\frac{q}{aπ}(aβ+xα) \)
C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\)
D. \(σ_z=[xα-\frac{az}{(x-α)^2+z^2}(x-α)]\)
Answer» C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\)
91.

Dimensionally a body force is defined as _____________

A. force at a point
B. pressure per unit area
C. force per unit area
D. force per unit volume
Answer» E.
92.

Surfaces forces are applied _________

A. externally at boundaries of body
B. internally at boundaries of body
C. only on one side in internal of the body
D. throughout the volume of the body
Answer» B. internally at boundaries of body
93.

Dimensionally a surface force is defined as _____________

A. force at a point
B. pressure per unit area
C. force per unit area
D. force per unit volume
Answer» D. force per unit volume
94.

The stress tensor is given by ___________

A. \begin{bmatrix} σ_{xx} & τ_{xy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{zz} \end{bmatrix}
B. \begin{bmatrix} σ_{zz} & τ_{xy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{xx} \end{bmatrix}
C. \begin{bmatrix} σ_{xx} & τ_{zz} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{zz} \end{bmatrix}
D. \begin{bmatrix} σ_{xx} & τ_{yy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{yy} & σ_{zz} \end{bmatrix}
Answer» B. \begin{bmatrix} σ_{zz} & τ_{xy} & τ_{xz} \\ τ_{yx} & σ_{yy} & τ_{yz} \\ τ_{zx} & τ_{zy} & σ_{xx} \end{bmatrix}
95.

The Boussinesq influence factor for r/z ratio equal to 0.3 is given by ____________

A. 0.3840
B. 0.5465
C. 0.9873
D. 0.2312
Answer» B. 0.5465
96.

The partial differential of normal stress in y-direction in terms of effective stress is given by __________

A. \(\frac{∂σ_y{‘}}{∂y}\)
B. \(\frac{∂σ_y{‘}}{∂y}-γ_w \frac{∂h}{∂y}\)
C. \(\frac{∂σ_y{‘}}{∂y}+γ_w \frac{∂h}{∂y}\)
D. \(\frac{∂σ_y{‘}}{∂y}*γ_w \frac{∂h}{∂y}\)
Answer» D. \(\frac{∂σ_y{‘}}{∂y}*γ_w \frac{∂h}{∂y}\)
97.

The Boussinesq equation representing the polar radial stress is ___________

A. \(σ_R=\frac{3Q}{2} \frac{cos⁡β}{R^2} \)
B. \(σ_R=\frac{3Q}{2π} \frac{cos⁡β}{R^2}\)
C. \(σ_R=\frac{3Q}{2π} \frac{cos⁡β}{R}\)
D. \(σ_R=\frac{3Q}{2π} \frac{cos⁡β}{R^3} \)
Answer» C. \(σ_R=\frac{3Q}{2π} \frac{cos⁡β}{R}\)
98.

_________ is more accurate method of determining the vertical stress at any point.

A. Isobar chart
B. equivalent point load method
C. Influence chart
D. Fenske’s chart
Answer» D. Fenske’s chart
99.

What will be the intensity of shear stress at a depth of 4m and at a radial distance of 1m from concentrated load of 20 kN?

A. 0.4356 kN/m²
B. 0.244 kN/m²
C. 0.652 kN/m²
D. 0.128 kN/m²
Answer» E.
100.

In the generalised Hook’s law equation, εₓ=C₁₁σₓ+ C₁₂ (σᵧ+σz), the constant C₁₁ is __________

A. E
B. 1/E
C. 0
D. μ
Answer» C. 0