Explore topic-wise MCQs in Analog Circuits.

This section includes 11 Mcqs, each offering curated multiple-choice questions to sharpen your Analog Circuits knowledge and support exam preparation. Choose a topic below to get started.

1.

The transconductance of a B.J.T.is 5mS (gm) while a 2K (Rl) load resistance is connected to the C.E. stage. Neglecting the Early effect, what is the Miller multiplication factor for the input side?

A. 21
B. 11
C. 20
D. 0
Answer» C. 20
2.

If 1/h12 = 4, for a C.E. stage- what is the value of the base to collector capacitance, after Miller multiplication, at the input side?

A. 4C<sub> </sub>
B. 5C<sub> </sub>
C. 6C<sub> </sub>
D. 1.1C<sub> </sub>
Answer» D. 1.1C<sub> </sub>
3.

If 1/h12 = 10 for a C.E. stage, what is the value of the base to collector capacitance, after Miller multiplication, at the output side?

A. 1.1C<sub> </sub>
B. 1.2C<sub> </sub>
C. 2.1C<sub> </sub>
D. 2.2C<sub> </sub>
Answer» B. 1.2C<sub> </sub>
4.

For a cascode stage, with input applied to the C.B. stage, the input capacitance gets multiplied by a factor of ____

A. 0
B. 1
C. 3
D. 2
Answer» E.
5.

In a simple follower stage, C2 is a parasitic capacitance arising due to the depletion region between the collector and the substrate. What is the value of C2?

A. 0
B. Infinite
C. C<sub>cs</sub>
D. 2*C<sub>cs</sub>
Answer» B. Infinite
6.

If early effect is included, and R1 is the total resistance connected at the collector. What is the output pole of a simple C.B. stage?

A. 1/[(R<sub>1</sub> || ro) * 2(C<sub>cs</sub> + C<sub> </sub>)]
B. 1/[(R<sub>1</sub> || ro) * (C<sub>cs</sub> + C<sub> </sub>)]
C. 1/[(R<sub>1</sub> || ro) * (2*C<sub>cs</sub> + C<sub> </sub>)]
D. 1/[(R<sub>1</sub> || ro) * 2*(C<sub>cs</sub> + 2*C<sub> </sub>)]
Answer» C. 1/[(R<sub>1</sub> || ro) * (2*C<sub>cs</sub> + C<sub> </sub>)]
7.

Ignoring early effect, if R1 is the total resistance connected to the collector; what is the output pole of a simple C.B. stage?

A. 1/[R<sub>1</sub> * (C<sub>cs</sub> + C<sub> </sub>)]
B. 1/[R<sub>1</sub>* (C<sub>cs</sub> + 2*C<sub> </sub>)]
C. 1/[R<sub>1</sub> * (2*C<sub>cs</sub> + C<sub> </sub>)]
D. 1/[R<sub>1</sub> * 2*(C<sub>cs</sub> + C<sub> </sub>)]
Answer» B. 1/[R<sub>1</sub>* (C<sub>cs</sub> + 2*C<sub> </sub>)]
8.

Ignoring early effect, if C1 is the total capacitance tied to the emitter, what is the input pole of a simple C.B. stage?

A. 1/g<sub>m</sub> * C<sub>1</sub>
B. 2/g<sub>m</sub> * C<sub>1</sub>
C. g<sub>m</sub> * C<sub>1</sub>
D. g<sub>m</sub> * 2C<sub>1</sub>
Answer» B. 2/g<sub>m</sub> * C<sub>1</sub>
9.

During high frequency applications of a B.J.T., which of the following three stages do not get affected by Miller s approximation?

A. C.E.
B. C.B.
C. C.C.
D. Follower
Answer» C. C.C.
10.

Ignoring early effect, if R2 is the total resistance at the collector, what could be the approximate output pole of a simple C.E. stage?

A. 1 / [R<sub>2</sub> * (C<sub>cs</sub> + C<sub> </sub>*(1 + 2/g<sub>m</sub>*R<sub>2</sub>))]
B. 1 / [R<sub>2</sub> * (C<sub>cs</sub> C<sub> </sub>*(1 + 1/g<sub>m</sub>*R<sub>2</sub>))]
C. 1 / [R<sub>2</sub> * (C<sub>cs</sub> + C<sub> </sub>*(1 1/g<sub>m</sub>*R<sub>2</sub>))]
D. 1 / [R<sub>2</sub> * (C<sub>cs</sub> + C<sub> </sub>*(1 + 1/g<sub>m</sub>*R<sub>2</sub>))]
Answer» E.
11.

Ignoring early effect, if R1 is the total resistance connected to the base and R2 is the total resistance connected at the collector, what could be the approximate input pole of a simple C.E. stage?

A. 1 / [R<sub>1</sub> * (C<sub> </sub>(2+g<sub>m</sub>*R<sub>2</sub>) + C<sub> </sub>)]
B. 1 / [R<sub>1</sub> * (C<sub> </sub>(1+2*g<sub>m</sub>*R<sub>2</sub>) + C<sub> </sub>)]
C. 1 / [R<sub>1</sub> * (C<sub> </sub>(1+g<sub>m</sub>*R<sub>2</sub>) + C<sub> </sub>)]
D. 1 / [R<sub>1</sub> * (C<sub> </sub>(1-g<sub>m</sub>*R<sub>2</sub>) + C<sub> </sub>)]
Answer» D. 1 / [R<sub>1</sub> * (C<sub> </sub>(1-g<sub>m</sub>*R<sub>2</sub>) + C<sub> </sub>)]