MCQOPTIONS
Saved Bookmarks
This section includes 283 Mcqs, each offering curated multiple-choice questions to sharpen your Control Systems knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
A control system whose step responses is 0.5 (1+ e |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">(s + 1) (s + 2)</td></tr></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">(s + 1) </td></tr></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">s(s + 2) </td></tr></table> |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 0 5s</center></td></tr><tr><td style="text-align: center;">(s + 1) (s + 2)</td></tr></table> |
| Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td></tr><tr><td style="text-align: center;">(s + 1) </td></tr></table> | |
| 152. |
A certain linear time invariant system has the state and the output equations given below |
| A. | 1 |
| B. | 1 |
| C. | 0 |
| D. | None of these |
| Answer» D. None of these | |
| 153. |
In the feedback system shown in the given figure, the noise component of output is given by (assume high loop gain at frequencies of interest) |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>-N(s)</center></td></tr><tr><td style="text-align: center;">H<sub>1(s)</sub></td></tr></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>N(s)</center></td></tr><tr><td style="text-align: center;">H<sub>1(s)</sub></td></tr></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>N(s)</center></td></tr><tr><td style="text-align: center;">H<sub>1</sub>(s)H<sub>2</sub>(s)</td></tr></table> |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>-N(s)</center></td></tr><tr><td style="text-align: center;">H<sub>1</sub>(s)H<sub>2</sub>(s)</td></tr></table> |
| Answer» C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>N(s)</center></td></tr><tr><td style="text-align: center;">H<sub>1</sub>(s)H<sub>2</sub>(s)</td></tr></table> | |
| 154. |
Given G(s) = 1 - Iss(s + 2) |
| A. | stable |
| B. | unstable |
| C. | marginally stable |
| D. | conditionally stable |
| Answer» B. unstable | |
| 155. |
The system shown in the given figure has a unit step input. In order to make the steady state error 0.1, the value of K required is |
| A. | 0.1 |
| B. | 0.9 |
| C. | 1.0 |
| D. | 9.0 |
| Answer» E. | |
| 156. |
The second order system defined by |
| A. | 1.2 sec |
| B. | 1.6 sec |
| C. | 2 sec |
| D. | 0.4 sec |
| Answer» C. 2 sec | |
| 157. |
The asymptotes and the break point coincide at s = 2. The transfer function can be |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 2)</center></td></tr><tr><td style="text-align: center;">(s + 1)(s + 2)</td></tr></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 2)</center></td></tr><tr><td style="text-align: center;">(s + 1)(s + 3)</td></tr></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">(s + 1)(s + 2)(s + 3)</td></tr></table> |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">(s + 2)<sup>3</sup></td></tr></table> |
| Answer» E. | |
| 158. |
Consider the following statements with reference to phase lead compensator. |
| A. | 2 and 3 are correct |
| B. | 1 and 2 are correct |
| C. | 1 and 3 are correct |
| D. | 1, 2 and 3 are correct |
| Answer» C. 1 and 3 are correct | |
| 159. |
The open-loop transfer function with unity feedback are given below for different systems |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | 4 |
| Answer» D. 4 | |
| 160. |
Consider the following statements with reference to the block diagram of a control system given in the figure |
| A. | 1, 2 and 3 are correct |
| B. | 1 and 2 are correct |
| C. | 2 and 3 are correct |
| D. | 1 and 3 are correct |
| Answer» D. 1 and 3 are correct | |
| 161. |
The unit impulse response of a system is given by C (t) = 0.5 e |
| A. | 1/(s + 2) |
| B. | 1/(1 + 2s) |
| C. | 2/(1 + 2s) |
| D. | 2/(s + 2) |
| Answer» C. 2/(1 + 2s) | |
| 162. |
The principles of homogeneity and superposition are applied to |
| A. | Iinear time variant systems |
| B. | non-Iinear time variant systems |
| C. | linear time invariant systems |
| D. | non-Iinear time invariant systems |
| Answer» D. non-Iinear time invariant systems | |
| 163. |
Consider the following statement regarding time-domain analysis of a control system |
| A. | 1 and 2 are correct |
| B. | 1 and 3 are correct |
| C. | 2 and 3 are correct |
| D. | 1, 2 and 3 are correct |
| Answer» C. 2 and 3 are correct | |
| 164. |
The solution set for the variables X, Y in the signal flow graph shown in the figure below is |
| A. | X = Y = 0 |
| B. | X = 1/2, Y = 2 |
| C. | X = 2, Y = 1/2 |
| D. | X = Y = 1/2 |
| Answer» B. X = 1/2, Y = 2 | |
| 165. |
The system with transfer function |
| A. | stable |
| B. | unstable |
| C. | marginally stable |
| D. | conditionally stable |
| Answer» C. marginally stable | |
| 166. |
By a suitable choice of the scalar parameter K, the system shown in the figure below, can be made to oscillate continuously at a frequency of |
| A. | 1 rad/s |
| B. | 2 rad/s |
| C. | 4 rad/s |
| D. | 8 rad/s |
| Answer» D. 8 rad/s | |
| 167. |
Consider a system shown in the given figure. If the system is disturbed so that C (0) = 1, then C (t) for a unit step input will be |
| A. | 1 + t |
| B. | 1 t |
| C. | 1 + 2t |
| D. | 1 2t |
| Answer» D. 1 2t | |
| 168. |
As compared to a closed loop system an open loop system is |
| A. | more stable as well as more accurate |
| B. | less stable as well as less accurate |
| C. | more stable but less accurate |
| D. | less stable but more accurate. |
| Answer» D. less stable but more accurate. | |
| 169. |
The open-loop transfer function of a unity negative feed back control system is given by |
| A. | stable and stable |
| B. | unstable and stable |
| C. | stable and unstable |
| D. | unstable and unstable |
| Answer» C. stable and unstable | |
| 170. |
A network has a pole at s = 1 and a zero at s = 2. If this network is excited by sinusoidal input, the output |
| A. | leads the input |
| B. | lags the input |
| C. | is in phase with input |
| D. | decays exponentially to zero |
| Answer» C. is in phase with input | |
| 171. |
The transfer function G (s) is |
| A. | stable |
| B. | unstable |
| C. | marginally stable |
| D. | conditionally stable |
| Answer» B. unstable | |
| 172. |
A lead compensating network |
| A. | All |
| B. | (i) and (iv) |
| C. | (ii) and (iii) |
| D. | (ii) and (iv) |
| Answer» B. (i) and (iv) | |
| 173. |
In the signal flow graph of figure shown below y/x equal to |
| A. | 3 |
| B. | 5/2 |
| C. | 2 |
| D. | None of these |
| Answer» D. None of these | |
| 174. |
Bode plots of an open-loop transfer function of a control system are shown in the given figure. The gain margin of the system is |
| A. | K |
| B. | K |
| C. | 1/K |
| D. | 1/K |
| Answer» B. K | |
| 175. |
If the characteristic equation of a system is |
| A. | 0 < K < 784 |
| B. | 1 < K < 64 |
| C. | 10 > K > 660 |
| D. | 4 < K < 784 |
| Answer» B. 1 < K < 64 | |
| 176. |
If the system has multiple poles on the Y-axis the system is |
| A. | stable |
| B. | unstable |
| C. | marginally stable |
| D. | conditionally stable |
| Answer» D. conditionally stable | |
| 177. |
The polar plot of a closed-loop system with a transfer function G/1 + GH is drawn for |
| A. | G |
| B. | 1 + GH |
| C. | GH |
| D. | G/1 + GH |
| Answer» D. G/1 + GH | |
| 178. |
The Nyquist plot of a open loop transfer function G (j ) H(j ) of a system encloses the ( 1, j0) point, the gain margin of the system is |
| A. | less than zero |
| B. | zero |
| C. | greater than zero |
| D. | infinity |
| Answer» B. zero | |
| 179. |
The transfer function of a system is given by |
| A. | Fig: - A |
| B. | Fig: - B |
| C. | Fig: - C |
| D. | Fig: - D |
| Answer» D. Fig: - D | |
| 180. |
The signal flow diagram of a system is shown in the given figure. The number of forward paths and the number of pairs of non-touching loops are respectively |
| A. | 3, 1 |
| B. | 3, 2 |
| C. | 4, 2 |
| D. | 2, 4 |
| Answer» B. 3, 2 | |
| 181. |
The Nyquist plot for a control system is shown in figure. The Bode plot for the same system will be as in |
| A. | Fig:- A |
| B. | Fig:- B |
| C. | Fig:- C |
| D. | Fig:- D |
| Answer» E. | |
| 182. |
The open-loop transfer function of a system is given by |
| A. | Fig:- A |
| B. | Fig:- B |
| C. | Fig:- C |
| D. | Fig:- D |
| Answer» B. Fig:- B | |
| 183. |
The Nyquist locus of a transfer function |
| A. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">s(1 + sT<sub>1</sub>)</td></tr></table> |
| B. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">(1 + sT<sub>1</sub>)(1 + sT<sub>2</sub>)</td></tr></table> |
| C. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">s(1 + sT<sub>1</sub>)(1 + sT<sub>2</sub>)</td></tr></table> |
| D. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">s(1 + sT<sub>1</sub>)(1 + sT<sub>2</sub>)(1 + sT<sub>3</sub>)</td></tr></table> |
| Answer» C. <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;">s(1 + sT<sub>1</sub>)(1 + sT<sub>2</sub>)</td></tr></table> | |
| 184. |
A unity feedback system has the open-loop transfer function |
| A. | never |
| B. | once |
| C. | twice |
| D. | thrice |
| Answer» C. twice | |
| 185. |
A unity feedback system has an open-loop transfer function of the from |
| A. | Fig:- A |
| B. | Fig:- B |
| C. | Fig:- C |
| D. | Fig:- D |
| Answer» B. Fig:- B | |
| 186. |
The system having the Bode magnitude plot shown in figure has the transfer function |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>60 (s + 0 01)(s + 0 1)</center></td></tr><tr><td style="text-align: center;">s<sup>2</sup>(s + 0 05)<sup>2</sup></td></tr></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5(1 + 10s)</center></td></tr><tr><td style="text-align: center;">s(1 + 20s)</td></tr></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8(s + 0 05)</center></td></tr><tr><td style="text-align: center;">s(s + 0 1)(s + 1)</td></tr></table> |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5(s + 0 1)</center></td></tr><tr><td style="text-align: center;">s(s + 0 05)</td></tr></table> |
| Answer» E. | |
| 187. |
The characteristic equation of a closed loop system is given by s |
| A. | 0 < K < 10 |
| B. | K > 10 |
| C. | K < |
| D. | 0 < K 20 |
| Answer» B. K > 10 | |
| 188. |
For a second order system, damping ratio ( ) is 0 < |
| A. | real but not equal |
| B. | real and equal |
| C. | complex conjugates |
| D. | imaginary |
| Answer» D. imaginary | |
| 189. |
The step error coefficient of a system G(s) = 1/(s + 6) (s + 1) with unity feedback is |
| A. | 1/6 |
| B. | |
| C. | 0 |
| D. | 1 |
| Answer» B. | |
| 190. |
A process with open-loop model |
| A. | the integral mode improves transient performance. |
| B. | the integral mode improves steady-state performance |
| C. | the derivative mode improves transient performance |
| D. | the derivative mode improves steady-state performance. |
| E. | B and C both |
| Answer» F. | |
| 191. |
The first two rows of Routh s tabulation of a fourth-order system are |
| A. | 0 |
| B. | 2 |
| C. | 3 |
| D. | 4 |
| Answer» C. 3 | |
| 192. |
The pole-zero configuration of a phase-lead compensator is given by |
| A. | Fig:- A |
| B. | Fig:- B |
| C. | Fig:- C |
| D. | Fig:- D |
| Answer» B. Fig:- B | |
| 193. |
The root locus of a unity feedback system is shown in the above figure. The open-loop transfer function is given by |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td></tr><tr><td style="text-align: center;"> s (s + 1) (s + 2)</td></tr></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 1)</center></td></tr><tr><td style="text-align: center;">s (s + 2)</td></tr></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 2)</center></td></tr><tr><td style="text-align: center;">s (s + 1)</td></tr></table> |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>Ks</center></td></tr><tr><td style="text-align: center;">(s + 1)(s + 2)</td></tr></table> |
| Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>Ks</center></td></tr><tr><td style="text-align: center;">(s + 1)(s + 2)</td></tr></table> | |
| 194. |
G |
| A. | minimum phase, all pass and non-minimum phase functions |
| B. | minimum phase, non-minimum phase and all pass functions |
| C. | all pass, minimum phase and non-minimum phase functions |
| D. | all pass, non-minimum phase and minimum phase functions. |
| Answer» C. all pass, minimum phase and non-minimum phase functions | |
| 195. |
Which one of the following statements are true of a type 1 system having unit gain in the forward path and a unity feedback? |
| A. | 1, 2 and 3 |
| B. | 1 and 2 |
| C. | 2 and 3 |
| D. | 1 and 3 |
| Answer» C. 2 and 3 | |
| 196. |
System has phase margin PM = 45 . The damping ratio is |
| A. | 1 |
| B. | 0.5 |
| C. | 0 |
| D. | 0.42 |
| Answer» E. | |
| 197. |
The frequency at which the Nyquist diagram cuts ( 1, 0) circle is known as |
| A. | gain crossover frequency |
| B. | phase crossover frequency |
| C. | damping frequency |
| D. | natural frequency |
| Answer» B. phase crossover frequency | |
| 198. |
The frequency at which the Nyquist diagram crosses the negative real axis is known as |
| A. | gain crossover frequency |
| B. | phase crossover frequency |
| C. | damping frequency |
| D. | natural frequency |
| Answer» C. damping frequency | |
| 199. |
Given that the transfer function G (s) is |
| A. | 2 and 3 |
| B. | 3 and 2 |
| C. | 3 and 3 |
| D. | 2 and 2 |
| Answer» B. 3 and 2 | |
| 200. |
A system has the transfer function (1 s)/ (1 + s). It is a |
| A. | non-minimum phase system |
| B. | minimum phase system |
| C. | |
| D. | low-pass system |
| E. | second order system |
| Answer» B. minimum phase system | |