

MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
10801. |
Which compound is chiral [RPMT 2002] |
A. | butane |
B. | 1-chloro-2-methyl butane |
C. | 2-methyl butane |
D. | 2-methyl propane |
Answer» C. 2-methyl butane | |
10802. |
\[\underset{H}{\overset{{{H}_{3}}C}{\mathop{{}}}}\,>C=C<\underset{H}{\overset{C{{H}_{3}}}{\mathop{{}}}}\,\] and \[\begin{matrix} {{H}_{3}}C & {} & H \\ {} & >C=C< & {} \\ \,\,\,\,H & {} & C{{H}_{3}} \\ \end{matrix}\]exhibit which isomerism [MP PET 2002] |
A. | Position isomerism |
B. | Geometrical isomerism |
C. | Optical isomerism |
D. | Functional isomerism |
Answer» C. Optical isomerism | |
10803. |
Which of the following does not show geometrical isomerism [AIEEE 2002] |
A. | 1, 2 dichloro-1-pentene |
B. | 1, 3-dichloro-2-pentene |
C. | 1, 1-dichloro-1-pentene |
D. | 1, 4-dichloro-2-pentene |
Answer» D. 1, 4-dichloro-2-pentene | |
10804. |
Which of the following can?t be used in Friedal Craft?s reactions [AFMC 2004] |
A. | \[FeC{{l}_{3}}\] |
B. | \[FeB{{r}_{2}}\] |
C. | \[AlC{{l}_{3}}\] |
D. | NaCl |
Answer» E. | |
10805. |
The function of \[AlC{{l}_{3}}\] in Friedel-Craft?s reaction is [KCET 2003] |
A. | To absorb HCl |
B. | To absorb water |
C. | To produce nucleophile |
D. | To produce electrophile |
Answer» E. | |
10806. |
The most common type of reaction in aromatic compounds is [Orissa JEE 2003] |
A. | Elimination reaction |
B. | Addition reaction |
C. | Electrophilic substitution reaction |
D. | Rearrangement reaction |
Answer» D. Rearrangement reaction | |
10807. |
Among the following the strongest nucleophile is [AIIMS 2005] |
A. | \[{{C}_{2}}{{H}_{5}}SH\] |
B. | \[C{{H}_{3}}CO{{O}^{-}}\] |
C. | \[C{{H}_{3}}N{{H}_{2}}\] |
D. | \[NCCH_{2}^{-}\] |
Answer» B. \[C{{H}_{3}}CO{{O}^{-}}\] | |
10808. |
Which one of the following is least reactive in a nucleophilic substitution reaction [CBSE PMT 2004] |
A. | \[C{{H}_{3}}C{{H}_{2}}Cl\] |
B. | \[C{{H}_{2}}=CHC{{H}_{2}}Cl\] |
C. | \[{{(C{{H}_{3}})}_{3}}C-Cl\] |
D. | \[C{{H}_{2}}=CHCl\] |
Answer» E. | |
10809. |
Which is an electrophile [DCE 2002] |
A. | \[BC{{l}_{3}}\] |
B. | \[C{{H}_{3}}OH\] |
C. | \[N{{H}_{3}}\] |
D. | \[AlCl_{4}^{-}\] |
Answer» B. \[C{{H}_{3}}OH\] | |
10810. |
Following reaction, \[{{(C{{H}_{3}})}_{3}}CBr+{{H}_{2}}O\to {{(C{{H}_{3}})}_{3}}COH+HBr\] is an example of [DCE 2002] |
A. | Elimination reaction |
B. | Free radical substitution |
C. | Nucleophilic substitution |
D. | Electrophilic substitution |
Answer» D. Electrophilic substitution | |
10811. |
Conversion of \[C{{H}_{4}}\] to \[C{{H}_{3}}Cl\] is an example of which of the following reaction [Pb. CET 2001] |
A. | Electrophilic substitution |
B. | Free radical addition |
C. | Nucleophilic substitution |
D. | Free radical substituion |
Answer» E. | |
10812. |
The optically active tartaric acid is named as D-(+)- tartaric acid because it has a positive [IIT-JEE 1999] |
A. | Optical rotation and is derived from D-glucose |
B. | pH in organic solvent |
C. | Optical rotation and is derived from D(+) glyceraldehyde |
D. | Optical rotation only when substituted by deuterium |
Answer» D. Optical rotation only when substituted by deuterium | |
10813. |
Of the following acids I. Hypophosphorous acid II. Orthophosphorous acid III. Caro's acid IV. Glycine |
A. | I, II monobasic; III dibasic acid and IV amphoteric |
B. | II monobasic; I, III dibasic acid and IV amphoteric |
C. | I monobasic; II, III dibasic acid and IV amphoteric |
D. | I, II, III dibasic acids and IV amphoteric |
Answer» D. I, II, III dibasic acids and IV amphoteric | |
10814. |
Select the best indicator from the given table for titration of 20 mL of \[0.02\,M\,\,C{{H}_{3}}COOH\] with 0.02 M NaOH. Given \[p{{K}_{a}}\,(C{{H}_{3}}COOH)=4.74\] Indicator pH Range (I) Bromothy mol blue 6.0-7.6 (II) Thymolphthalein 9.3-11.05 (III) Malachite green 11.4-13 (IV) M-Cresol purple 7.4-9.0 |
A. | I |
B. | II |
C. | III |
D. | IV |
Answer» E. | |
10815. |
Equal volumes of two HCl solutions of \[pH=3\] and were mixed. What is the pH of the resulting solution? |
A. | 3.5 |
B. | 4 |
C. | 4.5 |
D. | 3.3 |
Answer» E. | |
10816. |
The ionization constant of \[HCOOH\] is \[1.8\times {{10}^{-4}}\]. What is the percent ionization of a 0.001 M solution? |
A. | 0.66 |
B. | 0.42 |
C. | 0.34 |
D. | 0.58 |
Answer» D. 0.58 | |
10817. |
The solubility product of \[Mg{{(OH)}_{2}}\] is \[{{10}^{-14}}\]. The solubility of \[Mg{{(OH)}_{2}}\] in a buffer solution of \[pH=8\] is |
A. | \[{{10}^{-8}}\] |
B. | \[{{10}^{-6}}\] |
C. | \[{{10}^{-2}}\] |
D. | \[{{10}^{-4}}\] |
Answer» D. \[{{10}^{-4}}\] | |
10818. |
The degree of ionization of a compound depends on |
A. | size of solute |
B. | nature of solute |
C. | nature of vessel |
D. | quantity of electricity passed |
Answer» C. nature of vessel | |
10819. |
The number of moles of \[N{{H}_{3}}\] that must be added to 1 L of 0.1 M \[AgN{{O}_{3}}\] to reduce \[A{{g}^{+}}\] concentration to \[2\times {{10}^{-7}}M\] are Given, \[{{K}_{dis}}{{[Ag{{(N{{H}_{3}})}_{2}}]}^{+}}=6.8\times {{10}^{-8}}\] |
A. | 0.184 M |
B. | 0.384 M |
C. | 0.293 M |
D. | 0.0539 M |
Answer» C. 0.293 M | |
10820. |
Taking \[Ba{{(OH)}_{2}}\] to be completely ionised. The pH of its 0.001 M solution is |
A. | 11.3 |
B. | 2.7 |
C. | 11 |
D. | 3 |
Answer» B. 2.7 | |
10821. |
What is the minimum pH when \[Fe{{(OH)}_{3}},\] starts precipitating from a solution containing \[0.1M\text{ }FeC{{l}_{3}}\]? \[{{k}_{sp}}\] of \[Fe{{(OH)}_{3}}=8\times {{10}^{-13}}{{M}^{3}}(\log \text{ }2\text{ }=\text{ }0.3)\] |
A. | 3.7 |
B. | 5.7 |
C. | 10.3 |
D. | 8.3 |
Answer» D. 8.3 | |
10822. |
100 mL of 1 M \[HCl\] is mixed with 50 mL of 2 M \[HCl\]. Hence, \[\left[ {{H}_{3}}{{O}^{+}} \right]\] is: |
A. | 1.00 M |
B. | 1.50 M |
C. | 1.33 M |
D. | 3.00 M |
Answer» D. 3.00 M | |
10823. |
Which will act as a buffer solution |
A. | \[200\text{ }ml\text{ }N/10\text{ }NaOH\]\[+100\text{ }ml\text{ }N/20\text{ }HCl\] |
B. | \[100\text{ }ml\text{ }0.1\text{ }N\text{ }NaOH\]\[+100\text{ }ml\text{ }0.1\text{ }N\text{ }HCl\] |
C. | \[100\,\,ml\,\,0.1\,\,N\,NaOH\]\[+50\,\,ml\,\,0.2N\,C{{H}_{3}}OOH\] |
D. | \[100\text{ }ml\text{ }0.1\text{ }N\text{ }NaOH\]\[+150\text{ }ml\text{ }0.1\text{ }N\text{ }HCN\] |
Answer» E. | |
10824. |
Which relation is wrong |
A. | \[{{10}^{-pH}}+{{10}^{-pOH}}={{10}^{-14}}\] |
B. | \[pH\alpha \frac{1}{[{{H}^{+}}]}\] |
C. | \[{{K}_{w}}\alpha \,T\] |
D. | dissociation constant of water \[K=1.8\times {{10}^{-16}}\] |
Answer» B. \[pH\alpha \frac{1}{[{{H}^{+}}]}\] | |
10825. |
pH of an aqueous solution of HCl is 5. if 1 c.c. of this solution is diluted to 1000 times. The pH will become |
A. | 8 |
B. | 5 |
C. | 6.9 |
D. | None |
Answer» D. None | |
10826. |
In which case change in pH is maximum? |
A. | 1 mL of pH = 2 is diluted to 100 mL |
B. | 0.01 mol of \[NaOH\] is added to 100 mL of 0.01 M \[NaOH\] solution |
C. | 100 mL of \[{{H}_{2}}O\] is added to 900 mL of \[{{10}^{-6}}\] M \[HCl\] |
D. | 100 mL of pH = 2 solution is mixed with 100 mL of pH = 12 |
Answer» E. | |
10827. |
A solution is saturated with respect to \[SrC{{O}_{2}}\] and \[Sr{{F}_{2}}\] The \[\left[ C{{O}_{3}}^{2-} \right]\] was found to be \[1.2\times {{10}^{-3}}M.\] The concentration of \[{{F}^{-}}\] in the solution would be Given\[{{K}_{sp}}\,of\,SrC{{O}_{3}}=7.0\times {{10}^{-10}}{{M}^{2}}\], \[{{K}_{sp}}\]of \[Sr{{F}_{2}}=7.9\times {{10}^{-10}}{{M}^{3}}\] |
A. | \[1.3\times {{10}^{-3}}M\] |
B. | \[2.6\times {{10}^{-2}}M\] |
C. | \[3.7\times {{10}^{-2}}M\] |
D. | \[5.8\times {{10}^{-7}}M\] |
Answer» D. \[5.8\times {{10}^{-7}}M\] | |
10828. |
A solution of \[N{{H}_{4}}Cl\] and \[N{{H}_{3}}\] has pH = 8.0. Which of the following hydroxides may be precipitated when this solution is mixed with equal volume of 0.2 M of metal ion. |
A. | \[Ba{{\left( OH \right)}_{2}}\left( {{K}_{sp}}=1.1\times {{10}^{-4}} \right)\] |
B. | \[Mg{{\left( OH \right)}_{2}}\left( {{K}_{sp}}=3.5\times {{10}^{-4}} \right)\] |
C. | \[Fe{{(OH)}_{2}}\left( {{K}_{sp}}=8.1\times {{10}^{-16}} \right)\] |
D. | \[Ca{{\left( OH \right)}_{2}}\left( {{K}_{sp}}=2.1\times {{10}^{-5}} \right).\] |
Answer» D. \[Ca{{\left( OH \right)}_{2}}\left( {{K}_{sp}}=2.1\times {{10}^{-5}} \right).\] | |
10829. |
The partial pressure of \[C{{H}_{3}}OH(g),CO(g)\] and \[{{H}_{2}}(g)\] in equilibrium mixture for the reaction, \[CO(g)+2{{H}_{2}}(g)\rightleftharpoons C{{H}_{3}}OH(g)\] are 2.0, 1.0 and 0.1 atm respectively at \[427{}^\circ C\]. The value of \[{{K}_{p}}\] for the decomposition of \[C{{H}_{3}}OH\] to CO and \[{{H}_{2}}\] is |
A. | \[{{10}^{2}}atm\] |
B. | \[2\times {{10}^{2}}at{{m}^{-1}}\] |
C. | \[50\text{ }at{{m}^{2}}\] |
D. | \[5\times {{10}^{-3}}at{{m}^{2}}\] |
Answer» E. | |
10830. |
Which one of the following arrangements represents the correct order of the proton affinity of the given species: |
A. | \[{{I}^{-}}<{{F}^{-}}<H{{S}^{-}}<NH_{2}^{-}\] |
B. | \[H{{S}^{-}}<NH_{2}^{-}<{{F}^{-}}<{{I}^{-}}\] |
C. | \[{{F}^{-}}<{{I}^{-}}<\text{ }NH_{2}^{-}<H{{S}^{-}}\] |
D. | \[NH_{2}^{-}<H{{S}^{-}}<{{I}^{-}}<{{F}^{-}}\] |
Answer» B. \[H{{S}^{-}}<NH_{2}^{-}<{{F}^{-}}<{{I}^{-}}\] | |
10831. |
What is the percentage hydrolysis of NaCN in N/80 solution when the dissociation constant for \[HCN\] is \[1.3\times {{10}^{-9}}\]and \[{{K}_{w}}=1.0\times {{10}^{-14}}\] |
A. | 2.48 |
B. | 5.26 |
C. | 8.2 |
D. | 9.6 |
Answer» B. 5.26 | |
10832. |
\[NaOH\] is a strong base. What will be pH of \[5.0\times {{10}^{-2}}M\,NaOH\] solution? \[\left( log2=0.3 \right)\] |
A. | 14 |
B. | 13.7 |
C. | 13 |
D. | 12.7 |
Answer» E. | |
10833. |
Given(i) \[HCN(aq)+{{H}_{2}}O(l)\rightleftharpoons \] \[{{H}_{3}}{{O}^{+}}(aq)+C{{N}^{-}}(aq){{K}_{a}}=6.2\times {{10}^{-10}}\](ii) \[C{{N}^{-}}(aq)+{{H}_{2}}O(l)\rightleftharpoons \] \[HCN(aq)+O{{H}^{-}}(aq){{K}_{b}}=1.6\times {{10}^{-5}}.\]These equilibria show the following order of the relative base strength, |
A. | \[O{{H}^{-}}>{{H}_{2}}O>C{{N}^{-}}\] |
B. | \[O{{H}^{-}}>C{{N}^{-}}>{{H}_{2}}O\] |
C. | \[{{H}_{2}}O>C{{N}^{-}}>O{{H}^{-}}\] |
D. | \[C{{N}^{-}}>{{H}_{2}}O>O{{H}^{-}}\] |
Answer» C. \[{{H}_{2}}O>C{{N}^{-}}>O{{H}^{-}}\] | |
10834. |
20 mL of 0.2 M \[NaOH\] are added to 50 mL of 0.2 M \[C{{H}_{2}}COOH\]\[({{K}_{a}}=1.8\times 10{{~}^{-5}})\] the pH of the solution is |
A. | 4.56 |
B. | 4.73 |
C. | 9.45 |
D. | 6.78 |
Answer» B. 4.73 | |
10835. |
Which equilibrium can be described as an acid- base reaction using the Lewis acid-base definition but not using the Bronsted-Lowry definition? |
A. | \[2N{{H}_{3}}+{{H}_{2}}S{{O}_{4}}\rightleftharpoons 2N{{H}_{4}}^{+}+S{{O}_{4}}^{2-}\] |
B. | \[N{{H}_{3}}+C{{H}_{3}}COOH\rightleftharpoons N{{H}_{4}}^{+}+C{{H}_{3}}CO{{O}^{-}}\] |
C. | \[{{H}_{2}}O+C{{H}_{3}}COOH\rightleftharpoons {{H}_{3}}{{O}^{+}}+C{{H}_{3}}CO{{O}^{-}}\] |
D. | \[{{[Cu{{({{H}_{2}}O)}_{4}}]}^{2+}}+4N{{H}_{3}}\rightleftharpoons {{[Cu{{(N{{H}_{3}})}_{4}}]}^{2+}}+4{{H}_{2}}O\] |
Answer» E. | |
10836. |
A solution contains 10 mL 0.1 N \[NaOH\] and 10 mL 0.05 N \[{{H}_{2}}S{{O}_{4}}\], pH of this solution is: |
A. | less than 7 |
B. | 7 |
C. | zero |
D. | greater than 7 |
Answer» C. zero | |
10837. |
One mole of \[S{{O}_{3}}\] was placed in a one litre reaction flask at a given temperature when the reaction equilibrium was established in the reaction. \[2S{{O}_{3}}\rightleftharpoons 2S{{O}_{2}}+{{O}_{2}}\]. The vessel was found to contain 0.6 mole of\[S{{O}_{2}}\]. The value of the equilibrium constant is |
A. | 0.36 |
B. | 0.675 |
C. | 0.45 |
D. | 0.54 |
Answer» C. 0.45 | |
10838. |
If the synthesis of ammonia from Haber's process is carried out with exactly the same starting conditions (of partial pressure and temperature) but using \[{{D}_{\text{2}}}\](deuterium) in place of\[{{H}_{2}}\]. Then |
A. | the equilibrium will be disturbed |
B. | the composition of reaction mixture will remain same at equilibrium. |
C. | Use of isotope in reaction will not produce ammonia. |
D. | At equilibrium rate of forward reaction will be greater than the rate of reverse reaction |
Answer» C. Use of isotope in reaction will not produce ammonia. | |
10839. |
For the reaction \[{{H}_{2}}(g)+{{I}_{2}}(g)\rightleftharpoons 2HI(g)\] at 721 K, the value of equilibrium constant is 50, when equilibrium concentration of both is 5M. Value of \[{{K}_{p}}\] under the same conditions will be |
A. | 0.02 |
B. | 0.2 |
C. | 50 |
D. | 50 RT |
Answer» D. 50 RT | |
10840. |
The equilibrium constant for a reaction is K, and the reaction quotient is Q. For a particular reaction mixture, the ratio \[\frac{K}{Q}\]. is 0.33. This means that: |
A. | The reaction mixture will equilibrate to form more reactant species |
B. | the reaction mixture will equilibrate to form more product species |
C. | the equilibrium ratio of reactant to product concentrations will be 3 |
D. | the equilibrium ratio of reactant to product concentrations will be 0.33 |
Answer» B. the reaction mixture will equilibrate to form more product species | |
10841. |
A gaseous compound of molecular mass 82.1 dissociates on heating to 400 K as \[{{X}_{2}}{{Y}_{4}}(g)\rightleftharpoons {{X}_{2}}(g)+2{{Y}_{2}}(g)\] The density of the equilibrium mixture at a pressure of 1 atm and temperature of 400K is\[2.0g{{L}^{-1}}\]. The percentage dissociation of the compound is |
A. | 0.125 |
B. | 0.485 |
C. | 0.901 |
D. | 0.25 |
Answer» B. 0.485 | |
10842. |
The reaction \[CaC{{O}_{3}}\] ⇌ \[CaO+C{{O}_{2}}(g)\] goes to completion in lime kiln because [MP PMT/PET 1988; CPMT 1990] |
A. | Of the high temperature |
B. | \[CaO\] is more stable than \[CaC{{O}_{3}}\] |
C. | \[CaO\] is not dissociated |
D. | \[C{{O}_{2}}\] escapes continuously |
Answer» E. | |
10843. |
From separate solutions of sodium salts, NaW, NaX, NaY and NaZ have pH7.0,9.010.0 and ll.O respectively. When each solution was 0.1 M, the strongest acid is: |
A. | HW |
B. | HX |
C. | HY |
D. | HZ |
Answer» B. HX | |
10844. |
If \[p{{K}_{b}}\]A for fluoride ion at \[25{}^\circ C\]is 10.83, (he ionization constant of hydrofluoric acid in water at this temperature is |
A. | \[1.74\times {{10}^{-5}}\] |
B. | \[3.52\times {{10}^{-3}}\] |
C. | \[6.75\times {{10}^{-4}}\] |
D. | \[5.38\times {{10}^{-2}}\] |
Answer» D. \[5.38\times {{10}^{-2}}\] | |
10845. |
Solubility product of silver bromide is \[5.0\times {{10}^{-13}}\]. The quantity of potassium bromid (molar mass taken as 120 g \[mo{{l}^{-1}}\]) to be added to 1 L of 0.05 M solution of silver nitrate to start the precipitatin of AgBr is |
A. | \[1.2\times {{10}^{-10}}g\] |
B. | \[1.2\times {{10}^{-9}}g\] |
C. | \[6.2\times {{10}^{-5}}g\] |
D. | \[5.0\times {{10}^{-8}}g\] |
Answer» C. \[6.2\times {{10}^{-5}}g\] | |
10846. |
The following equilibrium is established when \[HCl{{O}^{{}}}_{4}\]is dissolved in weak acid \[HF\].\[HF+HCl{{O}_{4}}\rightleftharpoons Cl{{O}_{4}}^{-}+{{H}_{2}}{{F}^{+}}\] Which of the following is correct set of conjugate acid |
A. | HF and \[HCl{{O}_{4}}\] |
B. | HF and \[Cl{{O}_{4}}^{-}\] |
C. | HF and \[{{H}_{2}}{{F}^{+}}\] |
D. | \[HCl{{O}_{4}}\] and \[{{H}_{2}}{{F}^{+}}\] |
Answer» D. \[HCl{{O}_{4}}\] and \[{{H}_{2}}{{F}^{+}}\] | |
10847. |
For the following three reactions, 1, 2 and 3, equilibrium constants are given (1) \[C{{O}_{(g)}}+{{H}_{2}}{{O}_{(g)}}\rightleftarrows C{{O}_{2(g)}}+{{H}_{2(g)}};{{K}_{1}}\] (2) \[C{{H}_{4(g)}}\]\[+{{H}_{2}}{{O}_{(g)}}\rightleftarrows \]\[C{{O}_{(g)}}\]\[3{{H}_{2(g)}};{{K}_{2}}\] (3) \[C{{H}_{4(g)}}+2{{H}_{2}}{{O}_{(g)}}\rightleftarrows C{{O}_{2(g)}}+4{{H}_{2(g)}};{{K}_{3}}\] Which of the following relationship is correct? |
A. | \[{{K}_{1}}\sqrt{{{K}_{2}}}={{K}_{3}}\] |
B. | \[{{K}_{2}}{{K}_{3}}={{K}_{1}}\] |
C. | \[{{K}_{3}}={{K}_{1}}{{K}_{2}}\] |
D. | \[{{K}_{3}}.\,{{K}^{3}}_{2}={{K}^{2}}_{1}\] |
Answer» D. \[{{K}_{3}}.\,{{K}^{3}}_{2}={{K}^{2}}_{1}\] | |
10848. |
Which is a basic salt [MP PMT 1985] |
A. | \[PbS\] |
B. | \[PbC{{O}_{3}}\] |
C. | \[PbS{{O}_{4}}\] |
D. | \[2PbC{{O}_{3}}.Pb{{(OH)}_{2}}\] |
Answer» E. | |
10849. |
Which of the following salt is acidic [CPMT 1979, 81; NCERT 1979, 81; MP PET 1990; JIPMER 2002] |
A. | \[N{{a}_{2}}S{{O}_{4}}\] |
B. | \[NaHS{{O}_{3}}\] |
C. | \[N{{a}_{2}}S{{O}_{3}}\] |
D. | \[N{{a}_{2}}S\] |
Answer» C. \[N{{a}_{2}}S{{O}_{3}}\] | |
10850. |
\[B{{F}_{3}}\] is used as a catalyst in several industrial processes due to its [Kerala (Med.) 2002] |
A. | Strong reducing agent |
B. | Weak reducing agent |
C. | Strong Lewis acid nature |
D. | Weak Lewis acid character |
Answer» D. Weak Lewis acid character | |