

MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
3751. |
NO and \[{{H}_{2}}S\] both the pollutants of air. NO is \[{{H}_{2}}S\] remover while \[{{H}_{2}}S\] is NO remover. Under these effect, |
A. | NO is oxidized to \[N{{O}_{2}}\] and \[{{H}_{2}}S\] is oxidized to \[{{H}_{2}}S{{O}_{4}}\] |
B. | NO is oxidized to \[N{{O}_{2}}\] and \[{{H}_{2}}S\] is reduced to \[{{H}_{2}}S{{O}_{4}}\] |
C. | NO is reduced to \[N{{H}_{3}}\] and \[{{H}_{2}}S\] is oxidized to sulphur |
D. | NO is reduced to \[{{N}_{2}}\] and \[{{H}_{2}}S\] is oxidized to sulphur |
Answer» E. | |
3752. |
Deficiency of (\[{{F}^{-}}\]) in drinking water causes tooth decay. Its International 8tandard limit makes the enamel on tooth much harder by converting hydroxyapatite into much harder |
A. | \[C{{a}_{3}}{{(P{{O}_{4}})}_{2}}.\,Ca{{F}_{2}}\] |
B. | \[C{{a}_{3}}{{(P{{O}_{4}})}_{2}}.\,3Ca{{F}_{2}}\] |
C. | \[3C{{a}_{3}}{{(P{{O}_{4}})}_{2}}.\,Ca{{F}_{2}}\] |
D. | \[3C{{a}_{3}}{{(P{{O}_{4}})}_{2}}.\,3Ca{{F}_{2}}\] |
Answer» D. \[3C{{a}_{3}}{{(P{{O}_{4}})}_{2}}.\,3Ca{{F}_{2}}\] | |
3753. |
An example of chemical toxics is |
A. | removing water from industrial reactions |
B. | utilizing ammonia instead of vinegar |
C. | eliminating the formation of chlorinated organics in paper |
D. | storing BPA (Bis-phenol A) in plastic bottles |
Answer» D. storing BPA (Bis-phenol A) in plastic bottles | |
3754. |
Sewage containing organic waste should not be disposed in water bodies because it causes major water pollution Fishes in such a polluted water die because of |
A. | large number of mosquitoes |
B. | increase in the amount of dissolved oxygen |
C. | decrease in the amount of dissolved oxygen in water |
D. | clogging of gills by mud |
Answer» D. clogging of gills by mud | |
3755. |
Match List I with List II and select the correct answer using the codes given below the lists: List I (Pollutant) List II (Source) A. Microorganisms 1. Chemical fertilizers B. Plant nutrients 2. Abandoned coal mines C. Sediments 3. Domestic sewage D. Mineral acids 4. Erosion of soil by strip mining 5. Detergents |
A. | A\[\to \]1, B\[\to \]3, C\[\to \]2, D\[\to \]4 |
B. | A\[\to \]2, B\[\to \]5, C\[\to \]3, D\[\to \]1 |
C. | A\[\to \]3, B\[\to \]1, C\[\to \]4, D\[\to \]2 |
D. | A\[\to \]4, B\[\to \]2, C\[\to \]1, D\[\to \]5 |
Answer» D. A\[\to \]4, B\[\to \]2, C\[\to \]1, D\[\to \]5 | |
3756. |
Oxides of sulphur \[(S{{O}_{2}},S{{O}_{3}})\]are due to |
A. | burning of sulphur containing fossil fuel |
B. | roasting and smelting of sulphide ore |
C. | oxidation by air, \[{{H}_{2}}{{O}_{2}}\] and \[{{O}_{3}}\] |
D. | All of the above |
Answer» E. | |
3757. |
Identify the incorrect statement from the following: |
A. | Oxides of nitrogen in the atmosphere can cause the depletion of ozone layer |
B. | Ozone absorbs infrared radiation |
C. | Depletion of ozone layer is because of its chemical reactions with chlorofluoroalkanes |
D. | Ozone absorbs the intense ultraviolet radiation of the sun |
Answer» C. Depletion of ozone layer is because of its chemical reactions with chlorofluoroalkanes | |
3758. |
Given, \[{{E}^{o}}_{C{{r}_{2}}O_{4}^{2-}/C{{r}^{3+}}}=1.34\,V,\,\,\,\,{{E}^{o}}_{Cl/C{{l}^{-}}}=\,\,1.37\,V\] \[{{E}^{o}}_{C{{u}^{3+}}/C{{u}^{+}}}=-\,0.74\,V,\,\,\,{{E}^{o}}_{MnO_{4}^{-}/M{{n}^{2+}}}=\,1.51\,\,V,\] Based on the data given above the strongest oxidizing agent will be |
A. | \[MnO_{4}^{-}\] |
B. | \[M{{n}^{2+}}\] |
C. | \[C{{l}_{2}}\] |
D. | \[C{{r}^{3+}}\] |
Answer» B. \[M{{n}^{2+}}\] | |
3759. |
The standard potential at 298 K for the following half reactions are given against each: \[Z{{n}^{2+}}(aq)+2{{e}^{-}}\rightleftharpoons Zn(s)\] \[-\,0.762\text{ }V\] \[2{{H}^{+}}(aq)+2{{e}^{-}}\rightleftharpoons {{H}_{2}}(g)\] 0.000 V \[C{{r}^{3+}}(aq)+3{{e}^{-}}\rightleftharpoons Cr(s)\] \[-\,0.740\text{ }V\] \[F{{e}^{3+}}(aq)+2{{e}^{-}}\rightleftharpoons F{{e}^{2+}}(aq)\] 0.770 V Which is the strongest reducing agent? |
A. | Zn(s) |
B. | Cr(s) |
C. | \[{{H}_{2}}\left( g \right)\] |
D. | \[F{{e}^{2+}}\left( aq \right)\] |
Answer» B. Cr(s) | |
3760. |
The rusting of iron takes place as follows \[2{{H}^{+}}+2{{e}^{-}}+1/2{{O}_{2}}\to {{H}_{2}}O(l);\] \[{{E}^{o}}=+1.23\,V\] \[F{{e}^{2+}}+2{{e}^{-}}\to Fe(s);\,\,{{E}^{o}}=-\,0.44\,V\] Calculate \[\Delta G{}^\circ \] for the net process. |
A. | \[-\,152\] kJ \[mo{{l}^{-1}}\] |
B. | \[-\,161\]kJ \[mo{{l}^{-1}}\] |
C. | \[-\,322\]kJ \[mo{{l}^{-1}}\] |
D. | \[-\,76\]kJ \[mo{{l}^{-1}}\] |
Answer» D. \[-\,76\]kJ \[mo{{l}^{-1}}\] | |
3761. |
What product are formed during the electrolysis of a concentrated aqueous solution of sodium chloride using an electrolytic cell in which electrodes are separated by a porous pot? I. \[NaOH(aq)\] II. \[C{{l}_{2}}(g)\] III. \[NaCl{{O}_{3}}(aq)\] IV. \[{{H}_{2}}(g)\] V. \[NaClO(aq)\] Select the correct choice. |
A. | I, II and V |
B. | I, II and IV |
C. | I and II |
D. | I, III and V |
Answer» C. I and II | |
3762. |
In acidic medium, \[MnO_{4}^{-}\] is converted to \[M{{n}^{+2}}\] when acts as an oxidizing agent. The quantity of electricity required to reduce 0.05 mol of \[MnO_{4}^{-}\] would be |
A. | 0.01 F |
B. | 0.05 F |
C. | 0.25 F |
D. | 0.15 F |
Answer» D. 0.15 F | |
3763. |
The resistivity of aluminum is \[2.834\times {{10}^{-8}}\Omega m.\] Thus, conductance across a piece of aluminum wire, that is 4.0 mm in diameter and 2.00 m long is (assume current=1.25 A) |
A. | 111.0 S |
B. | 1.11 S |
C. | 222.05 S |
D. | 1111 S |
Answer» D. 1111 S | |
3764. |
In a cell that utilizes the reaction; \[Zn(s)+2{{H}^{+}}(aq.)\to Z{{n}^{2+}}(aq)+{{H}_{2}}(g),\]addition of \[{{H}_{2}}S{{O}_{4}}\] to cathode compartment will |
A. | increase the E and shift equilibrium to the left |
B. | lower the E and shift equilibrium to the right |
C. | increase the E and shift equilibrium to the right |
D. | lower the E and shift equilibrium to the left |
Answer» D. lower the E and shift equilibrium to the left | |
3765. |
The standard emf of a cell having one electron change found to be 0.591 V at \[25{}^\circ C\]. The equilibrium constant the reaction is |
A. | \[1.0\times {{10}^{30}}\] |
B. | \[1.0\times {{10}^{5}}\] |
C. | \[1.0\times {{10}^{10}}\] |
D. | \[1.0\times {{10}^{1}}\] |
Answer» D. \[1.0\times {{10}^{1}}\] | |
3766. |
Standard reduction electrode potentials of three metals A, B and C are +0.5 V, \[-\,3.0\]V, and \[-\,1.2\] V respectively. The reducing power of these metals are |
A. | \[B>C>A\] |
B. | \[A>B>C\] |
C. | \[C>B>A\] |
D. | \[A>C<B\] |
Answer» B. \[A>B>C\] | |
3767. |
Given standard electrode potentials: \[F{{e}^{3+}}+3{{e}^{-}}\to Fe;\] \[{{E}^{o}}=-\,0.036\text{ }volt\] \[F{{e}^{2+}}+2{{e}^{-}}\to Fe;\] \[{{E}^{o}}~=-\,0.440\text{ }volt\] The standard electrode potential \[E{}^\circ \]for \[F{{e}^{3+}}+{{e}^{-}}\to F{{e}^{2+}}\] |
A. | \[-\,0.476\]volt |
B. | \[-\,0.404\]volt |
C. | 0.440 volt |
D. | 0.772 volt |
Answer» E. | |
3768. |
The solubility product of silver iodide is \[8.3\times {{10}^{-17}}\] and the standard reduction potential of Ag/\[A{{g}^{+}}\] electrode is + 0.8 volts at \[25{}^\circ \text{ }C.\] The standard reduction potential of Ag, \[AgI\text{/}{{I}^{-}}\]electrode from these data is |
A. | \[-\,0.30\,V\] |
B. | + 0.16V |
C. | +0.10 V |
D. | \[-\,0.16\,V\] |
Answer» E. | |
3769. |
For\[Ag\to A{{g}^{+}}+{{e}^{-}},\] \[E{}^\circ =-0.798V\] \[{{V}^{2+}}+V{{O}^{2+}}+2{{H}^{+}}\to 2{{V}^{3+}}+{{H}_{2}}O,\] \[E\text{ }\!\!{}^\circ\!\!\text{ }=-0.614\text{ }V\] \[{{V}^{3+}}+A{{g}^{+}}+{{H}_{2}}O\to V{{O}^{2+}}+2{{H}^{+}}+Ag,\] \[E{}^\circ =-\,0.438\text{ }V\] Then \[E{}^\circ \]for the reaction \[{{V}^{3+}}+{{e}^{-}}\to {{V}^{2+}}\] is |
A. | + 0.255V |
B. | \[-\,0.255\,V\] |
C. | \[-\,0.254\,V\] |
D. | \[-\,1.055\,V\] |
Answer» C. \[-\,0.254\,V\] | |
3770. |
The standard reduction potentials for \[Z{{n}^{2+}}\]/Zn, \[N{{i}^{2+}}\]/Ni and \[F{{e}^{2+}}\]/Fe are \[-\text{ }0.74,\] \[-\text{ }0.22\text{ }V\]and \[-\text{ }0.44\text{ }V\]respectively. The reaction \[X+{{Y}^{2+}}\to {{X}^{2+}}+Y\] Will be spontaneous when |
A. | X = Ni, Y = Fe |
B. | X = Ni, Y = Zn |
C. | X = Fe, Y = Zn |
D. | X = Zn, Y = Ni |
Answer» E. | |
3771. |
Electrode potential data are given below. \[F{{e}^{3+}}~\left( aq \right)\text{+}{{\text{e}}^{-}}\to F{{e}^{2+}}\left( aq \right);\] \[E{}^\circ =+\,0.77\] \[A{{l}^{3+}}\left( aq \right)\text{+3}{{\text{e}}^{-}}\to \text{Al(s);}\] \[E{}^\circ \text{ }=-\,1.66\text{ }V\] \[B{{r}_{2}}(aq)+2{{e}^{-}}\to 2B{{r}^{-}}(aq);\] \[E{}^\circ =+\,1.08V\] Based on the data given above, reducing power of \[F{{e}^{2+}}\], Al and \[B{{r}^{-}}\] will increase in the order |
A. | \[B{{r}^{-}}<F{{e}^{2+}}<Al\] |
B. | \[F{{e}^{2+}}<Al<B{{r}^{-}}\] |
C. | \[Al<B{{r}^{-}}<F{{e}^{2+}}\] |
D. | \[Al<F{{e}^{2+}}<B{{r}^{-}}\] |
Answer» B. \[F{{e}^{2+}}<Al<B{{r}^{-}}\] | |
3772. |
Compound that is both paramagnetic and coloured is |
A. | \[{{K}_{2}}C{{r}_{2}}{{O}_{7}}\] |
B. | \[{{(N{{H}_{4}})}_{2}}[TiC{{l}_{6}}]\] |
C. | \[VOS{{O}_{4}}\] |
D. | \[{{K}_{3}}[Cu{{(CN)}_{4}}]\] |
Answer» D. \[{{K}_{3}}[Cu{{(CN)}_{4}}]\] | |
3773. |
The melting point of Cu, Ag and Au follow the order |
A. | Cu>Ag>Au |
B. | Au>Ag>Cu |
C. | Cu>Au>Ag |
D. | Ag>Au>Cu |
Answer» D. Ag>Au>Cu | |
3774. |
The radii (metallic) of Fe, Co and Ni are nearly same. This is due to |
A. | lanthanide contraction |
B. | the fact that successive addition of d-electrons screen the outer electrons (4s) from the inward pull of the nucleus |
C. | increase in radii due to increase in 'n' is compensated by decrease in radii due to increase in effective nuclear charge (Z) |
D. | atomic radii do not remain constant but decrease in a normal gradation |
Answer» C. increase in radii due to increase in 'n' is compensated by decrease in radii due to increase in effective nuclear charge (Z) | |
3775. |
The basic character of the transition metal monoxides follows the order (Atomic number, Ti = 22, V = 23, Cr = 24, Fe = 26) |
A. | TiO > VO > CrO > FeO |
B. | VO > CrO > TiO > FeO |
C. | TiO > FeO > VO > CrO |
D. | CrO > VO > FeO > TiO |
Answer» B. VO > CrO > TiO > FeO | |
3776. |
Which of the following is correct about basic strength of hydroxide? |
A. | \[Sc{{(OH)}_{3}}>Y{{(OH)}_{3}}>La{{(OH)}_{3}}\] |
B. | \[La{{(OH)}_{3}}>Y{{(OH)}_{3}}>Sc{{(OH)}_{3}}\] |
C. | \[La{{(OH)}_{3}}>Y{{(OH)}_{3}}>Sc{{(OH)}_{3}}\] |
D. | \[Y{{(OH)}_{3}}>La{{(OH)}_{3}}>Sc{{(OH)}_{3}}\] |
Answer» B. \[La{{(OH)}_{3}}>Y{{(OH)}_{3}}>Sc{{(OH)}_{3}}\] | |
3777. |
A red solid is insoluble in water. However it becomes soluble if some KI is added to water. Heating the red solid in a test tube results in liberation of some violet colored fumes and droplets of metal appear on the cooler part of the test tube. The red solid is |
A. | \[HgO\] |
B. | \[P{{b}_{3}}{{O}_{4}}\] |
C. | \[{{(N{{H}_{4}})}_{2}}C{{r}_{2}}{{O}_{7}}\] |
D. | \[Hg{{I}_{2}}\] |
Answer» E. | |
3778. |
For the four successive transition elements (Cr, Mn, Fe and Co), the stability of+2 oxidation state will be there in which of the following order? |
A. | Fe > Mn > Co > Cr |
B. | Cr > Mn > Co > Fe |
C. | Mn > Cr > Fe > Co |
D. | Co > Mn > Fe > Cr |
Answer» D. Co > Mn > Fe > Cr | |
3779. |
The X, Y and Z respectively are |
A. | \[L{{n}_{2}}{{O}_{3}},{{H}_{2}},Ln{{(OH)}_{3}}+{{H}_{2}}\] |
B. | \[Ln{{(OH)}_{3}}+{{H}_{2}},L{{n}_{2}}{{O}_{3}},{{H}_{2}}\] |
C. | \[{{H}_{2}},L{{n}_{2}}{{O}_{3}},Ln{{(OH)}_{3}}+{{H}_{2}}\] |
D. | \[Ln{{(OH)}_{3}}+{{H}_{2}},LN{{O}_{3}},{{H}_{2}}\] |
Answer» C. \[{{H}_{2}},L{{n}_{2}}{{O}_{3}},Ln{{(OH)}_{3}}+{{H}_{2}}\] | |
3780. |
The main reason for larger number of oxidation state exhibited by the actinides than that corresponding lanthanides, is |
A. | lesser energy difference between 5\[f\]and 6d orbitals than between 4\[f\]and 5d-orbitals |
B. | larger atomic size of actinides than the lanthanides |
C. | more energy difference between 5\[f\]and 6d orbitals than between 4\[f\]and 5d-orbitals |
D. | greater reactive nature of the actinides than the lanthanides. |
Answer» B. larger atomic size of actinides than the lanthanides | |
3781. |
\[FeC{{r}_{2}}{{O}_{4}}\] (chromite) is converted to Cr by following steps: Chromite \[\xrightarrow{I}N{{a}_{2}}Cr{{O}_{4}}\]\[\xrightarrow{II}C{{r}_{2}}{{O}_{3}}\xrightarrow{III}Cr,\,\] I, II and III are |
A. | I II III \[N{{a}_{2}}C{{o}_{3}}/air,\Delta \] C C |
B. | I II III \[NaOH/air,\Delta \] C,\[\Delta \] Al,\[\Delta \] |
C. | I II III \[NaOH/air,\Delta \] C,\[\Delta \] Mg,\[\Delta \] |
D. | I II III cone. \[{{H}_{2}}S{{O}_{4}},\Delta \] \[N{{H}_{4}}Cl\] C,\[\Delta \] |
Answer» C. I II III \[NaOH/air,\Delta \] C,\[\Delta \] Mg,\[\Delta \] | |
3782. |
\[KMn{{O}_{4}}\] acts as an oxidizing agent in acidic medium. The number of moles of \[KMn{{O}_{4}}\] needed to react with one mole of sulphide ions in acidic solution is |
A. | 2/5 |
B. | 44319 |
C. | 1/5 |
D. | 44320 |
Answer» B. 44319 | |
3783. |
Pyrolusite in \[Mn{{O}_{2}}\] is used to prepare\[KMn{{O}_{4}}\]. Steps are \[Mn{{O}_{2}}\xrightarrow{I}Mn{{O}_{4}}^{2-}\xrightarrow{II}Mn{{O}_{4}}^{-}\] Here, I and II are |
A. | fused with KOH/air, electrolytic oxidation |
B. | fuse with cone. HN03/air, electrolytic oxidation |
C. | fused with KOH/air, electrolytic reduction |
D. | All are correct |
Answer» B. fuse with cone. HN03/air, electrolytic oxidation | |
3784. |
A, B and C respectively are: |
A. | \[{{K}_{2}}S{{O}_{4}}\],\[{{K}_{2}}Cr{{O}_{4}}\]and \[{{K}_{2}}C{{r}_{2}}{{O}_{7}}\] |
B. | \[{{K}_{2}}S{{O}_{4}}\],\[N{{a}_{2}}Cr{{O}_{4}}\] and \[N{{a}_{2}}C{{r}_{2}}{{O}_{7}}\] |
C. | \[{{H}_{2}}S{{O}_{4}}\],\[NaCr{{O}_{2}}\] and \[{{K}_{2}}C{{r}_{2}}{{O}_{7}}\] |
D. | \[{{H}_{2}}S{{O}_{4}}\],\[N{{a}_{2}}C{{r}_{2}}{{O}_{7}}\] and \[{{K}_{2}}C{{r}_{2}}{{0}_{7}}\] |
Answer» E. | |
3785. |
\[C{{r}_{2}}Cr{{O}_{7}}^{2-}\xrightarrow{pH=X}Cr{{O}_{4}}^{2-}\xrightarrow{pH=Y}C{{r}_{2}}O_{4}^{2-}\] pH Value of X and Fare |
A. | 4 and 5 |
B. | 4 and 8 |
C. | 8 and 4 |
D. | 8 and 9 |
Answer» D. 8 and 9 | |
3786. |
Which has lowest and highest first ionization enthalpy in 3d series? |
A. | Cu and Cr |
B. | Cu and Se |
C. | Cu and Zn |
D. | Sc and Zn |
Answer» E. | |
3787. |
The number of geometric isomers that can exist for square planar \[{{[Pt()Cl(py)(N{{H}_{3}})(N{{H}_{2}}OH)]}^{+}}\] I (py = pyridine): ' |
A. | 2 |
B. | 3 |
C. | 4 |
D. | 6 |
Answer» C. 4 | |
3788. |
The octahedral complex of a metal ion \[{{M}^{3+}}\] with fan monodentate ligands \[{{L}_{1}},\]\[{{L}_{2}},\]\[{{L}_{3}},\] and \[{{L}_{4}},\] absorbs wavelength! in the region of red, green, yellow, and blue, respectively The increasing order of ligand strength of the four Uganda is: |
A. | \[{{L}_{4}}<{{L}_{3}}<{{L}_{2}}<{{L}_{1}}\] |
B. | \[{{L}_{1}}<{{L}_{3}}<{{L}_{2}}<{{L}_{4}}\] |
C. | \[{{L}_{3}}<{{L}_{2}}<{{L}_{4}}<{{L}_{1}}\] |
D. | \[{{L}_{1}}<{{L}_{2}}<{{L}_{4}}<{{L}_{3}}\] |
Answer» C. \[{{L}_{3}}<{{L}_{2}}<{{L}_{4}}<{{L}_{1}}\] | |
3789. |
In Fe\[{{(CO)}_{5}}\], the Fe\[-\]C bond possesses: |
A. | \[\pi \]-character only |
B. | Both \[\sigma \] and \[\pi \] characters |
C. | Ionic character |
D. | \[\sigma \]-character only |
Answer» C. Ionic character | |
3790. |
Nickel (Z = 28) combines with a uninegative monodentate ligand \[{{X}^{-}}\] to form a paramagnetic complex \[{{[Ni{{X}_{4}}]}^{2-}}\]. The number of unpaired electron(s) in the nickel and geometry of the complex ion are, respectively: |
A. | One, tetrahedral |
B. | Two, tetrahedral |
C. | One, square planar |
D. | Two, square planar |
Answer» C. One, square planar | |
3791. |
The number of geometrical isomers of \[[Co{{(N{{H}_{3}})}_{3}}{{(N{{O}_{3}})}_{3}}]\]are: |
A. | 0 |
B. | 2 |
C. | 3 |
D. | 4 |
Answer» C. 3 | |
3792. |
\[[Co{{(N{{H}_{3}})}_{4}}{{(N{{O}_{2}})}_{2}}]Cl\] exhibits: |
A. | linkage isomerism, geometrical isomerism and optical isomerism |
B. | linkage isomerism, ionization isomerism and optical isomerism |
C. | linkage isomerism, ionization isomerism and geometrical isomerism |
D. | ionization isomerism, geometrical isomerism and optical isomerism |
Answer» D. ionization isomerism, geometrical isomerism and optical isomerism | |
3793. |
The IUPAC name of \[{{K}_{2}}[Cr{{(CN)}_{2}}{{O}_{2}}{{(O)}_{2}}(N{{H}_{3}})]\] is |
A. | potassiumamminedicyanodioxoperoxo chromate (VI) |
B. | potassiumamminecyanoperoxodioxo chromium (VI) |
C. | potassiumamminecyanoperoxodioxo chromium (IV) |
D. | potassiumamminecyanoperoxodioxo chromate (IV) |
Answer» B. potassiumamminecyanoperoxodioxo chromium (VI) | |
3794. |
Which of the following complexes show geometrical as well as optical isomerism? (1) \[{{[Cr{{(OX)}_{3}}]}^{3-}}\] (2) \[{{[Rh{{(en)}_{2}}C{{l}_{2}}]}^{+}}\] (3) \[{{[Co{{(N{{H}_{3}})}_{2}}{{(Cl)}_{2}}(en)]}^{+}}\] Select the correct answer using the codes given below. |
A. | 1 only |
B. | 1 and 2 only |
C. | 2 and 3 only |
D. | 1, 2, and 3 |
Answer» D. 1, 2, and 3 | |
3795. |
\[NiC{{l}_{2}}{{\left\{ P{{({{C}_{2}}{{H}_{5}})}_{2}}\,({{C}_{6}}{{H}_{5}}) \right\}}_{2}}\] exhibits temperature dependent magnetic behaviour (paramagnetic / diamagnetic). The coordination geometries of \[N{{i}^{2+}}\] in the paramagnetic and diamagnetic states respectively, are |
A. | tetrahedral and tetrahedral |
B. | square planar and square planar |
C. | tetrahedral and square planar |
D. | square planar and tetrahedral |
Answer» D. square planar and tetrahedral | |
3796. |
Match List I (complex ions) with List II (CFSE) and select the correct answer using the codes given below the list; List I List II (P) \[{{[Mn({{H}_{2}}{{O}_{6}})]}^{2+}}\] 1. \[-\]0.6 \[{{\Delta }_{0}}\] (Q) \[{{[Cr({{H}_{2}}{{O}_{6}})]}^{2+}}\] 2. \[-\]0.4 \[{{\Delta }_{0}}\] (R) \[{{[Fe({{H}_{2}}{{O}_{6}})]}^{2+}}\] 3. 0 (S) \[{{[Cr({{H}_{2}}{{O}_{6}})]}^{3+}}\] 4. \[-\]1.2 \[{{\Delta }_{0}}\] Code: |
A. | P\[\to \]3, Q\[\to \]1, R\[\to \]2, S\[\to \]4 |
B. | P\[\to \]1, Q\[\to \]2, R\[\to \]3, S\[\to \]4 |
C. | P\[\to \]4, Q\[\to \]3, R\[\to \]2, S\[\to \]1 |
D. | None of these |
Answer» B. P\[\to \]1, Q\[\to \]2, R\[\to \]3, S\[\to \]4 | |
3797. |
Geometrical shapes of the complexes formed by the reaction of \[N{{i}^{2+}}\] with \[C{{I}^{-}}\], \[C{{N}^{-}}\] and \[{{H}_{2}}O\], respectively, are |
A. | octahedral, tetrahedral and square planar |
B. | tetrahedral, square planar and octahedral |
C. | square planar, tetrahedral and octahedral |
D. | octahedral, square planar and octahedral |
Answer» C. square planar, tetrahedral and octahedral | |
3798. |
Among the following metal carbonyls, the C-0 bond order is lowest in |
A. | \[{{[Mn{{(CO)}_{6}}]}^{+}}\] |
B. | \[[Fe{{(CO)}_{5}}]\] |
C. | \[[Cr{{(CO)}_{6}}]\] |
D. | \[{{[V{{(CO)}_{6}}]}^{-}}\] |
Answer» C. \[[Cr{{(CO)}_{6}}]\] | |
3799. |
Amongst \[Ni{{(CO)}_{4}},{{[Ni{{(CN)}_{4}}]}^{2-}}\] and \[NiC{{l}_{4}}^{2-}\] |
A. | \[Ni{{(CO)}_{4}}\] and \[NiC{{l}_{4}}^{2-}\] are diamagnetic and \[{{[Ni{{(CN)}_{4}}]}^{2-}}\] is paramagnetic |
B. | \[{{[Ni{{(CN)}_{4}}]}^{2-}}\] and \[{{[Ni{{(CN)}_{4}}]}^{2-}}\] are diamagnetic and \[Ni{{(CO)}_{4}}\] is paramagnetic |
C. | \[Ni{{(CO)}_{4}}\] and \[{{[Ni{{(CN)}_{4}}]}^{2-}}\] are diamagnetic and \[NiC{{l}_{4}}^{2-}\]is paramagnetic |
D. | \[Ni{{(CO)}_{4}}\] is diamagne and \[NiC{{l}_{4}}^{2-}\] and \[{{[Ni{{(CN)}_{4}}]}^{2-}}\] are paramagnetic |
Answer» D. \[Ni{{(CO)}_{4}}\] is diamagne and \[NiC{{l}_{4}}^{2-}\] and \[{{[Ni{{(CN)}_{4}}]}^{2-}}\] are paramagnetic | |
3800. |
The correct name of is |
A. | tri -\[\mu \]- carbonyl bis (tricarbonyl) iron (0) |
B. | hexacarbonyl iron (III)\[\mu \]-tricarbonyl ferrate (0) |
C. | tricarbonyl iron (0)\[\mu \]-tricarbonyl iron (0) tricarbonyl |
D. | nonacarbonyl iron |
Answer» B. hexacarbonyl iron (III)\[\mu \]-tricarbonyl ferrate (0) | |