MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 7201. |
The number of electrons to balance the following equation \[NO_{3}^{-}+4{{H}^{+}}+{{e}^{-}}\,\to \,2{{H}_{2}}O+NO\] is [IIT Screening 1991] |
| A. | 5 |
| B. | 4 |
| C. | 3 |
| D. | 2 |
| Answer» D. 2 | |
| 7202. |
The standard reduction potential \[NaCl\]for the half reactions are as \[Zn=Z{{n}^{2+}}+2{{e}^{-}};\,\,{{E}^{o}}=+0.76\,V\] \[Fe=F{{e}^{2+}}+2{{e}^{-}};\,\,{{E}^{o}}=+0.41\,V\] The EMF for cell reaction \[F{{e}^{2+}}+Zn\,\to \,Z{{n}^{2+}}+Fe\] is [IIT 1988; CBSE PMT 1993, 96; BHU 1995, 2000; CPMT 2000; KCET 2000; AIIMS 2001; Orissa JEE 2002] |
| A. | \[-\,0.35\,V\] |
| B. | \[+\,0.35\,V\] |
| C. | \[+\,1.17\,V\] |
| D. | \[-\,1.17\,V\] |
| Answer» C. \[+\,1.17\,V\] | |
| 7203. |
The reaction \[\tfrac{1}{2}{{H}_{2}}(g)+AgCl(s)\,\to \,{{H}^{+}}(aq)+C{{l}^{-}}(aq)+Ag(s)\] occurs in the galvanic cell [IIT 1985; AMU 2002; KCET 2003] |
| A. | \[Ag/AgCl(s)\,KCl\,(\text{soln})\,\,||\,\,AgN{{O}_{3}}\,(\text{soln})\,/Ag\] |
| B. | \[Pt/{{H}_{2}}(g)\,HCl\,(\text{soln})\,\,||\,\,AgN{{O}_{3}}\,(\text{soln})\,/Ag\] |
| C. | \[Pt/{{H}_{2}}(g)\,HCl\,(\text{soln})\,\,||\,\,AgCl\,(s)\,/Ag\] |
| D. | \[Pt/{{H}_{2}}(g)\,KCl\,(\text{soln})\,\,||\,\,AgCl\,(s)\,/Ag\] |
| Answer» D. \[Pt/{{H}_{2}}(g)\,KCl\,(\text{soln})\,\,||\,\,AgCl\,(s)\,/Ag\] | |
| 7204. |
What amount of Cl2 gas liberated at anode, if 1 amp. current is passed for 30 min. from NaCl solution. [BHU 2005] |
| A. | 0.66 moles |
| B. | 0.33 moles |
| C. | 0.66 g |
| D. | 0.33 g |
| Answer» D. 0.33 g | |
| 7205. |
4.5g of aluminium (at mass 27amu) is deposited at cathode from \[A{{l}^{3+}}\] solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from \[{{H}^{+}}\] ions in solution by the same quantity of electric charge will be [CBSE PMT 2005] |
| A. | 22.4 L |
| B. | 44.8 L |
| C. | 5.6 L |
| D. | 11.2 L |
| Answer» D. 11.2 L | |
| 7206. |
The mass of carbon anode consumed (giving only carbondioxide) in the production of 270kg of aluminium metal from bauxite by the Hall process is [CBSE PMT 2005] |
| A. | 180kg |
| B. | 270kg |
| C. | 540kg |
| D. | 90kg |
| Answer» E. | |
| 7207. |
Calculate \[\Lambda _{HOAc}^{\infty }\] using appropriate molar conductances of the electrolytes listed above at infinite dilution in \[{{H}_{2}}O\] at 25°C [AIEEE 2005] |
| A. | 517.2 |
| B. | 552.7 |
| C. | 390.7 |
| D. | 217.5 |
| Answer» D. 217.5 | |
| 7208. |
Aluminium oxide may be electrolysed at 1000°C to furnish aluminium metal (At. Mass = 27 amu; 1 Faraday = 96,500 Coulombs). The cathode reaction is \[A{{l}^{3}}+3{{e}^{-}}\to Al{}^\circ \] To prepare 5.12kg of aluminium metal by this method would require [AIEEE 2005] |
| A. | \[5.49\times {{10}^{7}}C\] of electricity |
| B. | \[1.83\times {{10}^{7}}C\] of electricity |
| C. | \[5.49\times {{10}^{4}}C\] of electricity |
| D. | \[5.49\times {{10}^{1}}C\] of electricity |
| Answer» B. \[1.83\times {{10}^{7}}C\] of electricity | |
| 7209. |
The decomposition of hydrogen peroxide is an example of [Roorkee 2000] |
| A. | Exothermic reaction |
| B. | Endothermic reaction |
| C. | Negative catalysis |
| D. | Auto-oxidation |
| Answer» B. Endothermic reaction | |
| 7210. |
On the basis of the electrochemical theory of aqueous corrosion, the reaction occurring at the cathode is [MP PET 1994; UPSEAT 2001] |
| A. | \[{{O}_{2\,(g)}}+4H_{(aq)}^{+}+4{{e}^{-}}\to 2{{H}_{2}}{{O}_{(l)}}\] |
| B. | \[F{{e}_{(s)}}\to Fe_{(aq)}^{2+}+2{{e}^{-}}\] |
| C. | \[Fe_{(aq)}^{2+}\to Fe_{(aq)}^{3+}+{{e}^{-}}\] |
| D. | \[{{H}_{2(g)}}+2OH_{(aq)}^{-}\to 2{{H}_{2}}{{O}_{(l)}}+2{{e}^{-}}\] |
| Answer» B. \[F{{e}_{(s)}}\to Fe_{(aq)}^{2+}+2{{e}^{-}}\] | |
| 7211. |
The limiting molar conductivities \[{{\wedge }^{0}}\]for NaCl, KBr and KCl are 126, 152 and 150 \[S\ c{{m}^{2}}mo{{l}^{-1}}\] respectively. The \[{{\wedge }^{0}}\] for NaBr is [AIEEE 2004] |
| A. | \[278\ S\ c{{m}^{2}}mo{{l}^{-1}}\] |
| B. | \[176\ S\ c{{m}^{2}}mo{{l}^{-1}}\] |
| C. | \[128\ S\ c{{m}^{2}}mo{{l}^{-1}}\] |
| D. | \[302\ S\ c{{m}^{2}}mo{{l}^{-1}}\] |
| Answer» D. \[302\ S\ c{{m}^{2}}mo{{l}^{-1}}\] | |
| 7212. |
On hydrolysis \[{{(Me)}_{2}}SiC{{l}_{2}}\] will produce [IIT-JEE 2003] |
| A. | \[{{(Me)}_{2}}Si{{(OH)}_{2}}\] |
| B. | \[{{(Me)}_{2}}Si=O\] |
| C. | \[-{{[-O-{{(Me)}_{2}}Si-O-]}_{n}}-\] |
| D. | \[M{{e}_{2}}SiCl(OH)\] |
| Answer» D. \[M{{e}_{2}}SiCl(OH)\] | |
| 7213. |
Co-ordination number of \[Fe\] in the complexes \[{{\left[ Fe{{\left( CN \right)}_{6}} \right]}^{4-}},\] \[{{\left[ Fe{{\left( CN \right)}_{6}} \right]}^{3-}}\] and \[{{\left[ FeC{{l}_{4}} \right]}^{-}}\] would be respectively [MP PET 2003] |
| A. | 2, 3, 3 |
| B. | 6, 6, 4 |
| C. | 6, 3,3 |
| D. | 6, 4, 6 |
| Answer» C. 6, 3,3 | |
| 7214. |
The correct order for the wavelength of absorption in the visible region is [AIIMS 2005] |
| A. | \[{{[Ni{{(N{{O}_{2}})}_{6}}]}^{4-}}<{{[Ni{{(N{{H}_{3}})}_{6}}]}^{2+}}<{{[Ni{{({{H}_{2}}O)}_{6}}]}^{2+}}\] |
| B. | \[{{[Ni{{(N{{O}_{2}})}_{6}}]}^{4-}}<{{[Ni{{({{H}_{2}}O)}_{6}}]}^{2+}}<{{[Ni{{(N{{H}_{3}})}_{6}}]}^{2+}}\] |
| C. | \[{{[Ni{{({{H}_{2}}O)}_{6}}]}^{2+}}<{{[Ni{{(N{{H}_{3}})}_{6}}]}^{2+}}<{{[Ni{{(N{{O}_{2}})}_{6}}]}^{4-}}\] |
| D. | \[{{[Ni{{(N{{H}_{3}})}_{6}}]}^{2+}}<{{[Ni{{({{H}_{2}}O)}_{6}}]}^{2+}}<{{[Ni{{(N{{O}_{2}})}_{6}}]}^{4-}}\] |
| Answer» B. \[{{[Ni{{(N{{O}_{2}})}_{6}}]}^{4-}}<{{[Ni{{({{H}_{2}}O)}_{6}}]}^{2+}}<{{[Ni{{(N{{H}_{3}})}_{6}}]}^{2+}}\] | |
| 7215. |
An aqueous solution of \[CoC{{l}_{2}}\] on addition of excess of concentrated HCl turns blue due to formation of [AIIMS 2005] |
| A. | \[[Co{{({{H}_{2}}O)}_{4}}C{{l}_{2}}]\] |
| B. | \[{{[Co({{H}_{2}}O)2C{{l}_{4}}]}^{2-}}\] |
| C. | \[{{[CoC{{l}_{4}}]}^{2-}}\] |
| D. | \[[Co({{H}_{2}}O)2C{{l}_{2}}]\] |
| Answer» D. \[[Co({{H}_{2}}O)2C{{l}_{2}}]\] | |
| 7216. |
Which of the following statements is incorrect? [KCET 2004] |
| A. | In \[{{K}_{3}}[Fe{{(CN)}_{6}}],\] the ligand has satisfied only the secondary valency of ferric ion. |
| B. | In \[{{K}_{3}}[Fe{{(CN)}_{6}}],\] the ligand has satisfied both primary and secondary valencies of ferric ion. |
| C. | In \[{{K}_{4}}[Fe{{(CN)}_{6}}],\] the ligand has satisfied both primary and secondary valencies of ferrous ion. |
| D. | In \[[Cu{{(N{{H}_{3}})}_{4}}]S{{O}_{4}},\] the ligand has satisfied only the secondary valency of copper. |
| Answer» B. In \[{{K}_{3}}[Fe{{(CN)}_{6}}],\] the ligand has satisfied both primary and secondary valencies of ferric ion. | |
| 7217. |
\[{{[\text{EDTA}]}^{4-}}\] is a: [UPSEAT 2004] |
| A. | Monodentate ligand |
| B. | Bidentate ligand |
| C. | Quadridentate ligand |
| D. | Hexadentate ligand |
| Answer» E. | |
| 7218. |
Which one of the following complexes is an outer orbital complex [AIEEE 2004] |
| A. | \[{{[Co{{(N{{H}_{3}})}_{6}}]}^{3+}}\] |
| B. | \[{{[Mn{{(CN)}_{6}}]}^{4-}}\] |
| C. | \[{{[Fe{{(CN)}_{6}}]}^{4-}}\] |
| D. | \[{{[Ni{{(N{{H}_{3}})}_{6}}]}^{2+}}\] Atomic nos: \[Mn=25,\,Fe=26,\,Co=27,\,Ni=28\] |
| Answer» E. | |
| 7219. |
A solution of potassium ferrocyanide would contains ...... ions [KCET 1990] |
| A. | 2 |
| B. | 3 |
| C. | 4 |
| D. | 5 |
| Answer» E. | |
| 7220. |
The complex compounds which result from the coordination of carbon monoxide are known as [BHU 1999] |
| A. | Electronic |
| B. | Carbonyls |
| C. | Carbonates |
| D. | Carbon permono |
| Answer» C. Carbonates | |
| 7221. |
The coordination number and oxidation state of \[Cr\] in \[{{K}_{3}}\left[ Cr{{\left( {{C}_{2}}{{O}_{4}} \right)}_{3}} \right]\] are, respectively [CBSE PMT 1995] |
| A. | 4 and +2 |
| B. | 6 and +3 |
| C. | 3 and +3 |
| D. | 3 and 0 |
| Answer» C. 3 and +3 | |
| 7222. |
Which statement is false [CBSE PMT 1994] |
| A. | Some disinfectants can be used antiseptics at low concentration |
| B. | Sulphadiazine is a synthetic antibacterial |
| C. | Ampicillin is a natural antibiotic |
| D. | Aspirin is analgesic and antipyratic both |
| Answer» D. Aspirin is analgesic and antipyratic both | |
| 7223. |
Which of the following is molecular disease |
| A. | Allergy |
| B. | Cancer |
| C. | German measeles |
| D. | Sickel-cell-anaemia |
| Answer» C. German measeles | |
| 7224. |
Which of the following is a local anaesthetic [Pb. CET 2003] |
| A. | Diazepam |
| B. | Procaine |
| C. | Mescaline |
| D. | None of the above |
| Answer» C. Mescaline | |
| 7225. |
Which one of the following is known as broad spectrum antibiotics [BHU 1987; AMU (Aligarh) 1992; Haryana CET 1999; Pb. CET 2001] |
| A. | Streptomycine |
| B. | Ampicillin |
| C. | Chloramphenicol |
| D. | Penicillin G |
| Answer» D. Penicillin G | |
| 7226. |
Further growth of cancerous cells in the body is arrested by |
| A. | Physiotherapy |
| B. | Chemotherapy |
| C. | Electrotherapy |
| D. | Psychotherapy |
| Answer» C. Electrotherapy | |
| 7227. |
Which of the following can possibly be used as analgesic without causing addiction and any modification [CBSE 1997] |
| A. | Morphine |
| B. | N-acetylparaaminophenol |
| C. | Diazepam |
| D. | Tetra hydrocatenol |
| Answer» D. Tetra hydrocatenol | |
| 7228. |
Asthma patient use a mixture of ?.. for respiration [DCE 2003] |
| A. | \[{{O}_{2}}\] and \[{{N}_{2}}O\] |
| B. | \[{{O}_{2}}\] and \[He\] |
| C. | \[{{O}_{2}}\] and \[N{{H}_{3}}\] |
| D. | \[{{O}_{2}}\] and \[CO\] |
| Answer» C. \[{{O}_{2}}\] and \[N{{H}_{3}}\] | |
| 7229. |
Which of the following represents soap [DCE 2004] |
| A. | \[{{C}_{17}}{{H}_{35}}COOK\] |
| B. | \[{{C}_{17}}{{H}_{35}}COOH\] |
| C. | \[{{C}_{15}}{{H}_{31}}COOH\] |
| D. | \[{{({{C}_{17}}{{H}_{35}}COO)}_{2}}Ca\] |
| Answer» B. \[{{C}_{17}}{{H}_{35}}COOH\] | |
| 7230. |
Parathion is [JIPMER 2001] |
| A. | An organic phosphorus compound |
| B. | Chlorinated aromatic compound |
| C. | Chlorinated aliphatic compound |
| D. | Benzene derivative |
| Answer» B. Chlorinated aromatic compound | |
| 7231. |
Specific impulse of a rocket and the critical temperature of the fuel reacted in the motor of the rocket has the relationship |
| A. | \[{{I}_{s}}\propto {{T}_{c}}\] |
| B. | \[{{I}_{s}}\propto 1/{{T}_{c}}\] |
| C. | \[{{I}_{s}}\propto \sqrt{\left( {{T}_{c}} \right)}\] |
| D. | \[{{I}_{s}}\propto \sqrt{(1/{{T}_{c}})}\] |
| Answer» D. \[{{I}_{s}}\propto \sqrt{(1/{{T}_{c}})}\] | |
| 7232. |
Which of the following groups is not an auxochrome |
| A. | \[-N{{(C{{H}_{3}})}_{2}}\] |
| B. | \[-OH\] |
| C. | \[-OC{{H}_{3}}\] |
| D. | \[>C=N\] |
| Answer» E. | |
| 7233. |
Tranquilisers are substances used for the treatment of [Kerala PMT 2002] |
| A. | Cancer |
| B. | AIDS |
| C. | Mental diseases |
| D. | Physical disorders |
| E. | Blood infection |
| Answer» D. Physical disorders | |
| 7234. |
Which one is acidic dye [DCE 1996] |
| A. | Methyl orange |
| B. | Methyl red |
| C. | Phenolphthalein |
| D. | All of these |
| Answer» B. Methyl red | |
| 7235. |
Aspirin is chemically [CPMT 1989; AMU (Aligarh) 1992; DCE 2004] |
| A. | Methyl salicylate |
| B. | Ethyl salicylate |
| C. | Acetyl salicylic acid |
| D. | o-hydroxy benzoic acid |
| Answer» D. o-hydroxy benzoic acid | |
| 7236. |
The structure given below is known as [Kerala (Med.) 2003] |
| A. | Penicilline F |
| B. | Penicillin G |
| C. | Penicillin K |
| D. | Ampicillin |
| E. | Sulphadiazine |
| Answer» C. Penicillin K | |
| 7237. |
The rate constant, the activation energy and the arrhenius parameter of a chemical reaction at \[{{25}^{o}}C\] are \[3.0\times {{10}^{-4}}{{s}^{-1}}\], \[104.4\,kJ\,mo{{l}^{-1}}\] and \[6.0\times {{10}^{14}}{{s}^{-1}}\] respectively. The value of the rate constant as \[T\to \infty \] is [IIT 1996] |
| A. | \[2.0\times {{10}^{18}}{{s}^{-1}}\] |
| B. | \[6.0\times {{10}^{14}}{{s}^{-1}}\] |
| C. | Infinity |
| D. | \[3.6\times {{10}^{30}}{{s}^{-1}}\] |
| Answer» C. Infinity | |
| 7238. |
The rate constant \[({K}')\] of one reaction is double of the rate constant \[({K}'')\] of another reaction. Then the relationship between the corresponding activation energies of the two reactions (\[{{E}_{a}}^{\prime }\] and \[{{E}_{a}}^{\prime\prime }\]) will be [MP PET 1994; UPSEAT 2001] |
| A. | \[{{E}_{a}}^{\prime }>{{E}_{a}}^{\prime\prime }\] |
| B. | \[{{E}_{a}}^{\prime }={{E}_{a}}^{\prime\prime }\] |
| C. | \[{{E}_{a}}^{\prime }<{{E}_{a}}^{\prime\prime }\] |
| D. | \[{{E}_{a}}^{\prime }=4{{E}_{a}}^{\prime\prime }\] |
| Answer» D. \[{{E}_{a}}^{\prime }=4{{E}_{a}}^{\prime\prime }\] | |
| 7239. |
For an endothermic reaction, where \[\Delta H\] represents the enthalpy of the reaction in \[kJ/mol\], the minimum value for the energy of activation will be [IIT 1992] |
| A. | Less than \[\Delta H\] |
| B. | Zero |
| C. | More than \[\Delta H\] |
| D. | Equal to \[\Delta H\] |
| Answer» D. Equal to \[\Delta H\] | |
| 7240. |
If we plot a graph between log K and \[\frac{1}{T}\] by Arrhenius equation, the slope is [UPSEAT 2001] |
| A. | \[-\frac{{{E}_{a}}}{R}\] |
| B. | \[+\frac{{{E}_{a}}}{R}\] |
| C. | \[-\frac{{{E}_{a}}}{2.303\,R}\] |
| D. | \[+\frac{{{E}_{a}}}{2.303\,R}\] |
| Answer» D. \[+\frac{{{E}_{a}}}{2.303\,R}\] | |
| 7241. |
The rate law for a reaction between the substances A and B is given by, rate \[=k{{[A]}^{n}}{{[B]}^{m}}\]. On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as [AIEEE 2003] |
| A. | \[\frac{1}{{{2}^{(m+n)}}}\] |
| B. | \[(m+n)\] |
| C. | \[(n-m)\] |
| D. | \[{{2}^{(n-m)}}\] |
| Answer» E. | |
| 7242. |
The differential rate law for the reaction \[{{H}_{2}}+{{I}_{2}}\to 2HI\] is [AIEEE 2002] |
| A. | \[-\frac{d[{{H}_{2}}]}{dt}=-\frac{d[{{I}_{2}}]}{dt}=+\frac{1}{2}\frac{d[HI]}{dt}\] |
| B. | \[\frac{d[{{H}_{2}}]}{dt}=\frac{d[HI]}{dt}=\frac{1}{2}\frac{d[HI]}{dt}\] |
| C. | \[\frac{1}{2}\frac{d[{{H}_{2}}]}{dt}=\frac{1}{2}\frac{d[{{I}_{2}}]}{dt}=-\frac{d[HI]}{dt}\] |
| D. | \[-2\frac{d[{{H}_{2}}]}{dt}=-2\frac{d[{{I}_{2}}]}{dt}=+\frac{d[HI]}{dt}\] |
| Answer» B. \[\frac{d[{{H}_{2}}]}{dt}=\frac{d[HI]}{dt}=\frac{1}{2}\frac{d[HI]}{dt}\] | |
| 7243. |
A Substance undergoes first order decomposition. The decomposition follows two parallel first order reactions as The percentage distribution of B and C are [Kerala PMT 2004] |
| A. | 75% B and 25% C |
| B. | 80% B and 20% C |
| C. | 60% B and 40% C |
| D. | 90% B and 10% C |
| E. | 76.83% B and 23.17% C |
| Answer» F. | |
| 7244. |
The reaction, \[X\to \]product follows first order kinetics. In 40 minutes the concentration of X changes from 0.1 M to 0.025 M Then the rate of reaction when concentration of X is 0.01 M |
| A. | \[1.73\times {{10}^{-4}}M\ {{\min }^{-1}}\] |
| B. | \[3.47\times {{10}^{-5}}M\ {{\min }^{-1}}\] |
| C. | \[3.47\times {{10}^{-4}}M\ {{\min }^{-1}}\] |
| D. | \[1.73\times {{10}^{-5}}M\ {{\min }^{-1}}\] |
| Answer» D. \[1.73\times {{10}^{-5}}M\ {{\min }^{-1}}\] | |
| 7245. |
For which order reaction a straight line is obtained along with x?axis by plotting a graph between half life \[({{t}_{1/2}})\]and initial concentration 'a' [RPET 2003] |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | 0 |
| Answer» C. 3 | |
| 7246. |
The integrated rate equation is \[Rt=\log \ {{C}_{0}}-\log {{C}_{t}}\]. The straight line graph is obtained by plotting [AIEEE 2002] |
| A. | \[\text{time}\ \text{v/s}\ \text{log}{{\text{C}}_{\text{t}}}\] |
| B. | \[\frac{1}{\text{time}}\text{v}/\text{s}\ {{\text{C}}_{\text{t}}}\] |
| C. | \[\text{time}\ \text{v}/\text{s}\ {{\text{C}}_{\text{t}}}\] |
| D. | \[\frac{1}{\text{time}}\text{v}/\text{s}\ \frac{1}{{{\text{C}}_{\text{t}}}}\] |
| Answer» B. \[\frac{1}{\text{time}}\text{v}/\text{s}\ {{\text{C}}_{\text{t}}}\] | |
| 7247. |
Half life of a reaction is found to be inversely proportional to the cube of its initial concentration. The order of reaction is [KCET 2002] |
| A. | 2 |
| B. | 5 |
| C. | 3 |
| D. | 4 |
| Answer» E. | |
| 7248. |
For the reaction \[C{{H}_{3}}COOC{{H}_{3}}+{{H}_{2}}O\xrightarrow{{{H}^{+}}}\] \[C{{H}_{3}}COOH+C{{H}_{3}}OH\]The progress of the process of reaction is followed by |
| A. | Finding the amount of methanol formed at different intervals |
| B. | Finding the amount of acetic acid formed at different intervals |
| C. | Using a voltmeter |
| D. | Using a polarimeter |
| Answer» C. Using a voltmeter | |
| 7249. |
The rate constant k, for the reaction \[{{N}_{2}}{{O}_{5}}(g)\to \] \[2N{{O}_{2}}(g)+\frac{1}{2}{{0}_{2}}(g)\] is \[2.3\times {{10}^{-2}}{{s}^{-1}}\]. Which equation given below describes the change of \[[{{N}_{2}}{{O}_{5}}]\] with time? \[{{[{{N}_{2}}{{O}_{5}}]}_{0}}\] and \[{{[{{N}_{2}}{{O}_{5}}]}_{t}}\]correspond to concentration of \[{{N}_{2}}{{O}_{5}}\]initially and at time, t [AIIMS 2004] |
| A. | \[{{[{{N}_{2}}{{O}_{5}}]}_{t}}={{[{{N}_{2}}{{O}_{5}}]}_{0}}+kt\] |
| B. | \[{{[{{N}_{2}}{{O}_{5}}]}_{0}}={{[{{N}_{2}}{{O}_{5}}]}_{t}}{{e}^{kt}}\] |
| C. | \[{{\log }_{10}}{{[{{N}_{2}}{{O}_{5}}]}_{t}}={{\log }_{10}}{{[{{N}_{2}}{{O}_{5}}]}_{0}}-kt\] |
| D. | \[\text{In}\frac{{{\text{ }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{O}_{5}}]}_{0}}}{{{\text{ }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{O}_{5}}]}_{t}}}=kt\] |
| Answer» E. | |
| 7250. |
Which of the following is the fastest reaction [Pb. CET 2002] |
| A. | \[C+\frac{1}{2}{{O}_{2}}\xrightarrow{250{}^\circ C}CO\] |
| B. | \[C+\frac{1}{2}{{O}_{2}}\xrightarrow{500{}^\circ C}CO\] |
| C. | \[C+\frac{1}{2}{{O}_{2}}\xrightarrow{750{}^\circ C}CO\] |
| D. | \[C+\frac{1}{2}{{O}_{2}}\xrightarrow{1000{}^\circ C}CO\] |
| Answer» E. | |