1.

The value ∆H transition of C (graphite) → C (diamond) is 1.9 kJ/mol at 25℃ entropy of graphite is higher than entropy of diamond. This implies that?

A. C(diamond) is more thermodynamically stable then C (graphite) at 25℃
B. C(graphite) is more thermodynamically stable than C (diamond) at 25℃
C. diamond will provide more heat on complete combustion at 25℃d) ∆Gtransition of C (diamon
D. is 1.9 kJ/mol at 25℃ entropy of graphite is higher than entropy of diamond. This implies that?a) C(diamond) is more thermodynamically stable then C (graphite) at 25℃b) C(graphite) is more thermodynamically stable than C (diamond) at 25℃c) diamond will provide more heat on complete combustion at 25℃d) ∆Gtransition of C (diamond) → C (graphit
E. → C (diamond) is 1.9 kJ/mol at 25℃ entropy of graphite is higher than entropy of diamond. This implies that?a) C(diamond) is more thermodynamically stable then C (graphite) at 25℃b) C(graphite) is more thermodynamically stable than C (diamond) at 25℃c) diamond will provide more heat on complete combustion at 25℃d) ∆Gtransition of C (diamond) → C (graphite) is -ve
Answer» E. → C (diamond) is 1.9 kJ/mol at 25℃ entropy of graphite is higher than entropy of diamond. This implies that?a) C(diamond) is more thermodynamically stable then C (graphite) at 25℃b) C(graphite) is more thermodynamically stable than C (diamond) at 25℃c) diamond will provide more heat on complete combustion at 25℃d) ∆Gtransition of C (diamond) → C (graphite) is -ve


Discussion

No Comment Found

Related MCQs