1.

The relations between shear stress \[\left( \tau  \right)\] and velocity gradient for ideal fluids, Newtonian fluids and non-Newtonian fluids are given below. Select the correct combination:

A. \[\tau =0\,;\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{2}};\] \[\tau =\mu \,{{\left( \frac{du}{dv} \right)}^{3}}\]
B. \[\tau =0\,;\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{2}}\,;\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{2}}\]
C. \[\tau =\mu \,\left( \frac{du}{dy} \right)\,\,;\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{2}};\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{3}}\]
D. \[\tau =\mu \,\left( \frac{du}{dy} \right)\,;\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{2}};\] \[\tau =0\]
Answer» C. \[\tau =\mu \,\left( \frac{du}{dy} \right)\,\,;\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{2}};\] \[\tau =\mu \,{{\left( \frac{du}{dy} \right)}^{3}}\]


Discussion

No Comment Found

Related MCQs