 
			 
			MCQOPTIONS
 Saved Bookmarks
				| 1. | If a possible representation of a band pass signal is obtained by expressing xl (t) as \(x_l (t)=a(t)e^{jθ(t})\) then what are the equations of a(t) and θ(t)? | 
| A. | a(t) = \(\sqrt{u_c^2 (t)+u_s^2 (t)}\) and θ(t)=\(tan^{-1}\frac{u_s (t)}{u_c (t)}\) | 
| B. | a(t) = \(\sqrt{u_c^2 (t)-u_s^2 (t)}\) and θ(t)=\(tan^{-1}\frac{u_s (t)}{u_c (t)}\) | 
| C. | a(t) = \(\sqrt{u_c^2 (t)+u_s^2 (t)}\) and θ(t)=\(tan^{-1}\frac{u_c (t)}{u_s (t)}\) | 
| D. | a(t) = \(\sqrt{u_s^2 (t)-u_c^2 (t)}\) and θ(t)=\(tan^{-1}\frac{u_s (t)}{u_c (t)}\) | 
| Answer» B. a(t) = \(\sqrt{u_c^2 (t)-u_s^2 (t)}\) and θ(t)=\(tan^{-1}\frac{u_s (t)}{u_c (t)}\) | |