MCQOPTIONS
Bookmark
Saved Bookmarks
→
Fluid Mechanics
→
Navier Stokes Equations Motion in Fluid Mechanics
→
A simple U-tube manometer can measure negative gau..
1.
A simple U-tube manometer can measure negative gauge pressures.
A.
True
B.
False
Answer» B. False
Show Answer
Discussion
No Comment Found
Post Comment
Related MCQs
In the manometer given above, 2 immiscible fluids mercury (ρ = 13600 kg/m3) and water (ρ = 1000 kg/m3) are used as manometric fluids. The water end is exposed to atmosphere (100 kPa) and the mercury end is exposed to a gas. At this position, the interface between the fluids is at the bottom most point of the manometer. Ignore the width of the manometer tube and the radius of curvature. The value of h is found to be 9.45 m. The height of the mercury column is given to be 75 cm. Find the gauge pressure of the gas. (g = 9.8 m/s2)
Both ends of a U-tube manometer are exposed to the atmosphere. There exists a possibility that the height difference of the manometer is non-zero. True or False?a) Trueb) False 9.The below figure shows an inclined U-tube mercury manometer. The vertical end of the tube is exposed to a gas of gauge pressure 50 kPa and the inclined end is exposed to the atmosphere. The inclined part of the tube is at an angle of 30o with the horizontal. Find the value of h (in cm) (take g = 9.8 m/s2, ρmercury = 13600 kg/m3)
In a U-tube mercury manometer, one end is exposed to the atmosphere and the other end is connected to a pressurized gas. The gauge pressure of the gas is found to be 40 kPa. Now, we change the manometric fluid to water. The height difference changes by: (ρmercury = 13600 kg/m3, ρwater = 1000 kg/m3).
In a U-tube manometer, one end is open to the atmosphere, the other end attached to a pressurized gas of gauge pressure 40 kPa. The height of the fluid column in the atmospheric side is 60 cm, and that on the gas side is 30 cm. The manometic fluid used is: (Take g = 9.8 m/s2).
Both ends of a U-tube manometer are exposed to the atmosphere. There exists a possibility that the height difference of the manometer is non-zero. True or False?
A simple U-tube manometer can measure negative gauge pressures.
A manometric liquid should suitably have _________
In a U-tube mercury manometer, one end is exposed to the atmosphere and the other end is connected to a pressurized gas. The gauge pressure of the gas is found to be 40 kPa. Now, we change the manometric fluid to water. The height difference changes by: (ρmercury = 13600 kg/m<sup>3</sup>, ρwater = 1000 kg/m<sup>3</sup>).$
In a U-tube manometer, one end is open to the atmosphere, the other end attached to a pressurized gas of gauge pressure 40 kPa. The height of the fluid column in the atmospheric side is 60 cm, and that on the gas side is 30 cm. The manometic fluid used is: (Take g = 9.8 m/s<sup>2</sup>).
A student wants to find the absolute pressure of water at a point below the surface of water. He has a barometer and a manometer pressure gauge. The barometer reads 1.3152 bar where as the manometer pressure gauge reads 0.3152 bar. What is the absolute pressure? (Assume that pressure at one end of the manometer is atmospheric.)
Reply to Comment
×
Name
*
Email
*
Comment
*
Submit Reply