

MCQOPTIONS
Saved Bookmarks
This section includes 150 Mcqs, each offering curated multiple-choice questions to sharpen your Control Systems knowledge and support exam preparation. Choose a topic below to get started.
101. |
Match List-I with List-II:List-IList-IIa)sin ωti) \(\frac{\omega }{(s^2+ω^2 )}\)b)cos ωtii) \(\frac{s}{(s^2+ω^2 )}\)c)sin h btiii) \(\frac{s}{(s^2-b^2 )}\)d)cos h btiv) \(\frac{b}{(s^2-b^2 )}\)Choose the correct option from those given below: |
A. | a-i; b-ii; c-iii; d-iv |
B. | a-ii; b-i; c-iv; d-iii |
C. | a-i; b-ii; c-iv; d-iii |
D. | a-ii; b-i; c-iii; d-iv |
Answer» D. a-ii; b-i; c-iii; d-iv | |
102. |
Find the initial value of the signal x(t) whose unilateral Laplace transform is:\(X\left( s \right) = \frac{{5s + 10}}{{s\left( {s + 4} \right)}}\) |
A. | 5 |
B. | 10 |
C. | 14 |
D. | 4 |
Answer» B. 10 | |
103. |
If x(t) is of finite duration and is absolutely integrable, then the 'region of convergence' is: |
A. | Entire s plane |
B. | From σ = -1 to σ = + ∞ |
C. | From σ = +1 to σ = - ∞ |
D. | Entire right half plane |
Answer» B. From σ = -1 to σ = + ∞ | |
104. |
Decimation-in-Time is the class of |
A. | Discrete Fourier Transform |
B. | Z Transform |
C. | Laplace Transform |
D. | Fast Fourier Transform |
Answer» E. | |
105. |
Find the transfer function of the state variable representation of the system given by the differential equation y” + 2y’ + 4y = 8u. |
A. | \(\frac{4}{{\left( {{s^2} + 2s + 4} \right)}}\) |
B. | \(\frac{8}{{\left( {{s^2} + 2s + 4} \right)}}\) |
C. | \(\frac{2}{{\left( {{s^2} + 2s + 4} \right)}}\) |
D. | \(\frac{6}{{\left( {{s^2} + 2s + 4} \right)}}\) |
Answer» C. \(\frac{2}{{\left( {{s^2} + 2s + 4} \right)}}\) | |
106. |
L{sin2 at} equals |
A. | 2a2/s(s2+4a2) |
B. | 2a2/s(s2-4a2) |
C. | 2s/(s2+4a2) |
D. | None of these |
Answer» B. 2a2/s(s2-4a2) | |
107. |
Fourier transform of a real and odd function is |
A. | Real and odd |
B. | Real and even |
C. | Imaginary and odd |
D. | Imaginary and even |
Answer» D. Imaginary and even | |
108. |
If the signal \({\rm{x}}\left( {\rm{t}} \right) = \frac{{{\rm{sin}}\left( {\rm{t}} \right)}}{{{\rm{\pi t}}}}{\rm{\;*}}\frac{{{\rm{sin}}\left( {\rm{t}} \right)}}{{{\rm{\pi t}}}}\) with ∗ denoting the convolution operation, then x(t) is equal to |
A. | \(\frac{{{\rm{sin}}\left( {\rm{t}} \right)}}{{{\rm{\pi t}}}}\) |
B. | \(\frac{{{\rm{sin}}\left( {2{\rm{t}}} \right)}}{{2{\rm{\pi t}}}}\) |
C. | \(\frac{{2{\rm{sin}}\left( {\rm{t}} \right)}}{{{\rm{\pi t}}}}\) |
D. | \({\left( {\frac{{{\rm{sin}}\left( {\rm{t}} \right)}}{{{\rm{\pi t}}}}} \right)^2}\) |
Answer» B. \(\frac{{{\rm{sin}}\left( {2{\rm{t}}} \right)}}{{2{\rm{\pi t}}}}\) | |
109. |
In VHF spectrum Analyzer, two types of frequency instabilities which will cause difficulties when narrow frequency range are displayed are known as(a) Short-term instability(b) Phase-noise(c) Correlation-noise(d) Long-term instabilityChoose the correct option |
A. | (a) and (c) |
B. | (b) and (a) |
C. | (c) and (d) |
D. | (b) and (d) |
Answer» E. | |
110. |
If the Fourier transform of x(t) is X(jω), obtain the Fourier transform of x(t – t0) |
A. | \({e^{ - j\omega {t_0}}}X\left( {j{t_0}} \right)\) |
B. | \({e^{j\omega {t_0}}}X\left( {j\omega } \right)\) |
C. | \({e^{ - j\omega {t_0}}}X\left( {j\omega {t_0}} \right)\) |
D. | \({e^{ - j\omega {t_0}}}X\left( {j\omega } \right)\) |
Answer» E. | |
111. |
Evaluate \(\mathop \smallint \limits_{ - 1}^1 \left( {3{t^2} + 1} \right)\delta \left( t \right)dt\) |
A. | 4 |
B. | 0 |
C. | 1 |
D. | 8 |
Answer» D. 8 | |
112. |
Match the two lists and choose the correct answer from the code given below:List IList II(a) Sin 2t(i)(b) e-2t(ii) (c) e-2t sin 2t(iii) (d) 1 – e-2t(iv) |
A. | (a) – (ii), (b) – (iii), (c) – (iv), (d) – (i) |
B. | (a) – (iii), (b) – (iv), (c) – (i), (d) – (ii) |
C. | (a) – (iii), (b) – (iv), (c) – (ii), (d) – (i) |
D. | (a) – (ii), (b) – (i), (c) – (iv), (d) – (iii) |
Answer» B. (a) – (iii), (b) – (iv), (c) – (i), (d) – (ii) | |
113. |
Consider Fourier representation of continuous and discrete-time systems. The complex exponentials (i.e., signals), which arise in such representation, have |
A. | the same properties always |
B. | different properties always |
C. | non-specific properties |
D. | mostly the same properties |
Answer» C. non-specific properties | |
114. |
Consider a causal LTI system characterized by differential equation \(\frac{{dy\left( t \right)}}{{dt}} + \frac{1}{6}y\left( t \right) = 3x\left( t \right)\). The response of the system to the input \(x\left( t \right) = 3{e^{ - \frac{t}{3}u\left( t \right)}}\). Where u(t) denotes the unit step function is |
A. | \(9{e^{ - \frac{t}{3}}}u\left( t \right)\) |
B. | \(9{e^{ - \frac{t}{6}}}u\left( t \right)\) |
C. | \(9{e^{ - \frac{t}{3}}}u\left( t \right) - 6{e^{ - \frac{t}{6}}}u\left( t \right)\) |
D. | \({54^{ - \frac{t}{6}}}u\left( t \right) - 54{e^{ - \frac{t}{3}}}u\left( t \right)\) |
Answer» E. | |
115. |
Laplace transform of eθt sin (ωt) is: |
A. | \(\frac{θ}{(s^2+ω^2 )}\) |
B. | \(\frac{\omega}{(s-\theta)^2+ω^2 }\) |
C. | \(\frac{θ}{s^2-(\theta-ω)^2 }\) |
D. | \(\frac{θ}{(s+\theta)^2-ω^2 }\) |
Answer» C. \(\frac{θ}{s^2-(\theta-ω)^2 }\) | |
116. |
A function f (t) is shown in the figure.The Fourier transform F(ω) of f(t) is |
A. | real and even function of ω |
B. | real and odd function of ω |
C. | imaginary and odd function of ω |
D. | imaginary and even function of ω |
Answer» D. imaginary and even function of ω | |
117. |
An ideal square wave with period of 20 ms shown in the figure, is passed through an ideal low pass filter with cut-off frequency 120 Hz. Which of the following is an accurate description of the output? |
A. | Output is zero |
B. | Output consists of both 50 Hz and 100 Hz frequency components |
C. | Output is a pure sinusoid of frequency 50 Hz |
D. | Output is a square wave of fundamental frequency 50 Hz |
Answer» D. Output is a square wave of fundamental frequency 50 Hz | |
118. |
A system has impulse response h(t) = e-2tu(t). Find its system function if the input to the system is x(t) = e-tu(t). |
A. | 1/jω |
B. | 1/(jω + 2) |
C. | 1/(jω + 4) |
D. | 2/jω + 2) |
Answer» C. 1/(jω + 4) | |
119. |
If the Laplace transform of function f(t) is given by \(\frac{s+3}{(s+1)(s+2)}\), then f(0) is |
A. | \(\dfrac{3}{2}\) |
B. | \(\dfrac{1}{2}\) |
C. | 0 |
D. | 1 |
Answer» E. | |
120. |
Laplace transform of 3 t4 is |
A. | 72 / s5 |
B. | 24 / s4 |
C. | 18 / s4 |
D. | 12 / s5 |
Answer» B. 24 / s4 | |
121. |
Find the Inverse Laplace transform of \({\rm{F}}\left( {\rm{s}} \right) = \frac{1}{{{\rm{s}} - 1}}\) |
A. | 1 |
B. | eat |
C. | cos at |
D. | cosh at |
Answer» C. cos at | |
122. |
In a series RLC circuit, the output is taken across the capacitor C, and the input is applied across the resistor R and ground Obtain the closed-loop transfer function. |
A. | \(\frac{s}{{\left( {1 + sRC + {s^2}LC} \right)}}\) |
B. | \(\frac{{sC}}{{\left( {1 + sRC + {s^2}LC} \right)}}\) |
C. | 1 + sRC + s2LC |
D. | \(\frac{1}{{\left( {1 + sRC + {s^2}LC} \right)}}\) |
Answer» E. | |
123. |
A different non constant even function x(t) has a derivative y(t), and their respective Fourier Transforms are X(ω) and Y(ω). Which of the following statements is TRUE |
A. | X(ω) and Y(ω) are both real |
B. | X(ω) is real and Y(ω) is imaginary |
C. | X(ω) and Y(ω) are both imaginary |
D. | X(ω) is imaginary and Y(ω) is real |
Answer» C. X(ω) and Y(ω) are both imaginary | |
124. |
Let u(t) denote the unit step function. The bilateral Laplace transform of the function f(t) = etu(−t) is ____. |
A. | \(\frac{1}{s-1}\) with real part of s < 1 |
B. | \(\frac{1}{s-1}\) with real part of s > 1 |
C. | \(\frac{-1}{s-1}\)with real part of s < 1 |
D. | \(\frac{-1}{s-1}\) with real part of s > 1 |
Answer» D. \(\frac{-1}{s-1}\) with real part of s > 1 | |
125. |
Let \(X(s) = \frac{{3{s^2} + 5s}}{{{s^2} + 10s + 21}}\) be the Laplace Transform of a signal x(t). Then X(0+) is |
A. | 0 |
B. | 3 |
C. | 5 |
D. | 21 |
Answer» B. 3 | |
126. |
If f(x) represented by Fourier integral \(f(x)=\int_0^{\infty} [A(ω) cos~ω x + B(ω) sin~ω x]dω \)then A(ω) is defined as |
A. | \(\frac{1}{\pi}\int_{-\infty}^{\infty} f(v) ~cos~\omega v ~dv\) |
B. | \(\frac{1}{\pi}\int_{-\infty}^{\infty} f(v) ~sin~\omega v ~dv\) |
C. | \(\int_{-\infty}^{\infty} f(\omega) ~cos~\omega v ~dv\) |
D. | \(\int_{-\infty}^{\infty} f(\omega) ~sin~\omega v ~dv\) |
Answer» B. \(\frac{1}{\pi}\int_{-\infty}^{\infty} f(v) ~sin~\omega v ~dv\) | |
127. |
For distortionless transmission through LTI system phase of H(ω) is |
A. | Constant |
B. | One |
C. | Zero |
D. | Linearly dependent of ω |
Answer» E. | |
128. |
Consider a linear time invariant system \(\dot x = Ax\) with initial condition \(x\left( 0 \right)\) at \(t = 0\). Suppose \(\alpha\) and \(\beta\) are eigenvectors of \(\left( {2 \times 2} \right)\) matrix A corresponding to distinct eigenvalues \({\lambda _1}\;and\;{\lambda _2}\) respectively. Then the response \(x\left( t \right)\) of the system due to initial condition \(x\left( 0 \right) = \alpha\) is |
A. | \({e^{{\lambda _1}t}}\alpha\) |
B. | \({e^{{\lambda _2}t}}\beta\) |
C. | \({e^{{\lambda _2}t}}\alpha\) |
D. | \({e^{{\lambda _1}t}}\alpha + {e^{{\lambda _2}t}}\beta\) |
Answer» B. \({e^{{\lambda _2}t}}\beta\) | |
129. |
Let the signal f(t) = 0 outside the interval [T1, T2], where T1 and T2 are finite. Furthermore, \(\left| {{\rm{f}}\left( {\rm{t}} \right)} \right| < \infty\). The region of convergence (ROC) of the signal’s bilateral Laplace transform F(s) is |
A. | A parallel strip containing the jΩ axis |
B. | A parallel strip not containing the jΩ axis |
C. | The entire s - plane |
D. | A half plane containing the jΩ axis |
Answer» D. A half plane containing the jΩ axis | |
130. |
A forcing function (t2 – 2t) u (t – 1) is applied to a linear system. The \({\cal L}\)- transform of the forcing function is |
A. | \(\frac{{2 - s}}{{{s^3}}}\epsilon{^{ - 2s}}\) |
B. | \(\left( {\frac{{1 - {s^2}}}{S}} \right)\epsilon{^{ - s}}\) |
C. | \(\frac{1}{s}{e^{ - s}} - \frac{1}{{{s^2}}}\epsilon{^{ - 2s}}\) |
D. | \(\left( {\frac{{2 - {s^2}}}{{{s^3}}}} \right)\epsilon{^{ - S}}\) |
Answer» E. | |
131. |
_______ is defined as the time delay that a signal component of frequency ω undergoes as it passes from the input to output of the system. |
A. | Phase delay |
B. | Group delay |
C. | Frequency deviation |
D. | Latency |
Answer» B. Group delay | |
132. |
For a function g(t), it is given that \(\mathop \smallint \limits_{ - \infty }^{ + \infty } g\left( t \right){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}\) for any real value \(\omega \).If, \(y\left( t \right) = \mathop \smallint \limits_{ - \infty }^t g\left( \tau \right)d\tau \), then \(\mathop \smallint \limits_{ - \infty }^\infty y\left( t \right)dt\) is: |
A. | 0 |
B. | \(-j\) |
C. | \(-\frac{j}{2}\) |
D. | \(\frac{j}{2}\) |
Answer» C. \(-\frac{j}{2}\) | |
133. |
Consider the function \(F(s) = \frac{5}{{s({s^2} + 3s + 2)}}\), where F(s) is Laplace transform of function f(t). The initial value of f(t) is: |
A. | 5 |
B. | 5/2 |
C. | 5/3 |
D. | 0 |
Answer» E. | |
134. |
Let f(t) be an even function i.e. f(-t) = f(t) for all t. Let the Fourier transform of f(t) be defined as \(F(ω ) = \displaystyle\int_{-\infty}^\infty f(t) e^{-jω t}dt\). Suppose \(\dfrac{dF(ω)}{dω} = -ω F(ω)\) for all ω, and F(0) = 1. Then |
A. | f(0) < 1 |
B. | f(0) = 1 |
C. | f(0) = 0 |
D. | f(0) > 1 |
Answer» B. f(0) = 1 | |
135. |
Laplace transform of f(t) = t2 sin t is |
A. | \(\frac{{3{s^2} - 1}}{{{{\left( {{s^2} + 1} \right)}^3}}}\) |
B. | \(\frac{{2\left( {3{s^2} - 1} \right)}}{{{{\left( {{s^2} + 1} \right)}^3}}}\) |
C. | \(\frac{{\left( {3{s^2} + 1} \right)}}{{{{\left( {{s^2} + 1} \right)}^3}}}\) |
D. | \(\frac{{\left( {3{s^2} - 1} \right)}}{{{{\left( {{s^2} + 1} \right)}^3}}}\) |
Answer» C. \(\frac{{\left( {3{s^2} + 1} \right)}}{{{{\left( {{s^2} + 1} \right)}^3}}}\) | |
136. |
A function, in the Laplace domain, is given by\(F\left( s \right) = \frac{2}{s} - \frac{1}{{s + 3}}\)Its value by final value theorem in 't' domain will be |
A. | \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = 3\) |
B. | \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = 2\) |
C. | \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = 1\) |
D. | \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = 4\) |
Answer» C. \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = 1\) | |
137. |
A signal \(x(t) = \sin c(α t)\), where α is a real constant, is the input to a Linear Time-Invariant system whose impulse response is \(h(t) = \sin c(β t)\), where β is a real constant. If min (α, β) denotes the minimum of α and β and similarly, max (α, β) denotes the maximum of α and β, and K is a constant, which one of the following statements is true about the (here, \(\sin c\left( x \right) = \frac{{\sin \left( {\pi x} \right)}}{{\pi x}}\)) output of the system? |
A. | It will be of the form \(K\sin c\left( {γ t} \right)\) where γ = min (α, β) |
B. | It will be of the form \(K\sin c\left( {γ t} \right)\) where γ = max (α, β) |
C. | It will be of the form \(K\sin c\left( {\alpha t} \right)\) |
D. | It cannot be a \(\sin c\) type of signal |
Answer» B. It will be of the form \(K\sin c\left( {γ t} \right)\) where γ = max (α, β) | |
138. |
In the Fourier transform, if the time domain signal x(t) is real and even, then the frequency domain signal X(jΩ) will be: |
A. | imaginary and even |
B. | imaginary and odd |
C. | real and even |
D. | real and odd |
Answer» D. real and odd | |
139. |
Z_AND_LAPLACE_TRANSFORM_ARE_RELATED_BY:?$ |
A. | s = ln z |
B. | s =ln z/T |
C. | s =z |
D. | s= T/ln z |
Answer» C. s =z | |
140. |
H_(Z)_IS_DISCRETE_RATIONAL_TRANSFER_FUNCTION._TO_ENSURE_THAT_BOTH_H(Z)_AND_ITS_INVERSE_ARE_STABLE:?$ |
A. | Poles must be inside the unit circle and zeros must be outside the unit circle |
B. | Poles and zeroes must be inside the unit circle |
C. | Poles and zeroes must be outside the unit circle |
D. | Poles must be outside the unit circle and zeros must be inside the unit circle |
Answer» C. Poles and zeroes must be outside the unit circle | |
141. |
What is the ROC of z-transform of finite duration anti-causal sequence?$ |
A. | z=0 |
B. | z=‚àû |
C. | Entire z-plane, except at z=0 |
D. | Entire z-plane, except at z=‚àû |
Answer» C. Entire z-plane, except at z=0 | |
142. |
A sequence x (n) with the z-transform X (z) = Z4 + Z2 – 2z + 2 – 3Z-4 is applied to an input to a linear time invariant system with the impulse response h (n) = 2δ (n-3). The output at n = 4 will be?# |
A. | -6 |
B. | Zero |
C. | 2 |
D. | -4 |
Answer» C. 2 | |
143. |
If the region of convergence of x1[n]+x2[n] is 1/>|z|<2/3, the region of convergence of x1[n]-x2[n] includes: |
A. | 1/3>|z|<3 |
B. | 2/3>|z|<3 |
C. | 3/2>|z|<3 |
D. | 1/3>|z|<2/3 |
Answer» E. | |
144. |
The region of convergence of the z-transform of a unit step function is: |
A. | |z|>1 |
B. | |z|<1 |
C. | (Real part of z)>0 |
D. | (Real part of z)<0 |
Answer» B. |z|<1 | |
145. |
Which one of the following is the correct statement? The region of convergence of z-transform of x[n] consists of the values of z for which x[n] is: |
A. | Absolutely integrable |
B. | Absolutely summable |
C. | Unity |
D. | <1 |
Answer» C. Unity | |
146. |
What is the ROC of the signal x(n)=δ(n-k),k>0?$ |
A. | z=0 |
B. | z=‚àû |
C. | Entire z-plane, except at z=0 |
D. | Entire z-plane, except at z=‚àû |
Answer» D. Entire z-plane, except at z=‚Äö√Ñ√∂‚àö‚Ć‚àö¬™ | |
147. |
Two sequences x1 (n) and x2 (n) are related by x2 (n) = x1 (- n). In the z- domain, their ROC’s are$ |
A. | The same |
B. | Reciprocal of each other |
C. | Negative of each other |
D. | Complements of each other |
Answer» C. Negative of each other | |
148. |
What is the set of all values of z for which X(z) attains a finite value? |
A. | Radius of convergence |
B. | Radius of divergence |
C. | Feasible solution |
D. | None of the mentioned |
Answer» B. Radius of divergence | |
149. |
The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (α t), α > 0 by a factor$ |
A. | α |
B. | 1/α |
C. | α<sup>2</sup> |
D. | α |
Answer» B. 1/‚âà√≠¬¨¬± | |
150. |
The discrete-time signal x (n) = (-1)n is periodic with fundamental period |
A. | 6 |
B. | 4 |
C. | 2 |
D. | 0 |
Answer» D. 0 | |