 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 12 Mcqs, each offering curated multiple-choice questions to sharpen your Soil Mechanics knowledge and support exam preparation. Choose a topic below to get started.
| 1. | When the ground is horizontal, \(α=\frac{π}{2}\) in constant K. What will be the radial stress σr due to inclined line load at the horizontal ground surface? | 
| A. | \(σ_r=\frac{Q cosθ}{r}\) | 
| B. | \(σ_r=\frac{2Q cos(θ-β)}{πr}\) | 
| C. | \(σ_r=\frac{Q sinθ}{r}\) | 
| D. | \(σ_r=\frac{2Q sinθ}{r}\) | 
| Answer» C. \(σ_r=\frac{Q sinθ}{r}\) | |
| 2. | The radial stress component σr due to inclined line load of intensity Q per unit length is given by ___________ | 
| A. | \(σ_r=\frac{2Q}{r}(\frac{cosβcosθ}{2α+sin2α})\) | 
| B. | \(σ_r=\frac{2Q}{r} (\frac{cosβcosθ}{2α+sin2α}+\frac{sinβsinθ}{2α-sin2α})\) | 
| C. | \(σ_r=\frac{Q}{r} (\frac{cosβcosθ}{2α+sin2α}+\frac{sinβsinθ}{2α-sin2α})\) | 
| D. | \(σ_r=\frac{2Q}{r}(\frac{sinβsinθ}{2α-sin2α})\) | 
| Answer» C. \(σ_r=\frac{Q}{r} (\frac{cosβcosθ}{2α+sin2α}+\frac{sinβsinθ}{2α-sin2α})\) | |
| 3. | The shear stress component in xz-plane in Cartesian coordinates for horizontal line load is ___________ | 
| A. | \(τ_{xz}=\frac{2Q}{xzsinθcosθ} \) | 
| B. | \(τ_{xz}=\frac{2Qxz^2}{π(x^2+z^2)^2} \) | 
| C. | \(τ_{xz}=\frac{2Qx^3}{π(x^2+z^2)^2} \) | 
| D. | \(τ_{xz}=\frac{2Qx^2 z}{π(x^2+z^2)^2} \) | 
| Answer» E. | |
| 4. | The stress component in x-direction on a horizontal plane in Cartesian coordinates for horizontal line load is ___________ | 
| A. | \(σ_x=\frac{2Q}{xzsinθcosθ} \) | 
| B. | \(σ_x=\frac{2Qxz^2}{π(x^2+z^2)^2} \) | 
| C. | \(σ_x=\frac{2Qx^3}{π(x^2+z^2)^2} \) | 
| D. | \(σ_x=\frac{2Qx^2 z}{π(x^2+z^2)^2} \) | 
| Answer» D. \(σ_x=\frac{2Qx^2 z}{π(x^2+z^2)^2} \) | |
| 5. | The relation between the shear stress component in xz-plane in Cartesian coordinates and polar coordinates for vertical line load is ___________ | 
| A. | τxz=σr tan2θ | 
| B. | τxz=σr cosec2θ | 
| C. | τxz=σr sinθcosθ | 
| D. | τxz=σr sin2θ | 
| Answer» D. τxz=σr sin2θ | |
| 6. | The relation between the stress component in z-direction on a horizontal plane in Cartesian coordinates and polar coordinates for vertical line load is ___________ | 
| A. | σz=σr cos2θ | 
| B. | σz=σr cosec2θ | 
| C. | σz=σr cosθ | 
| D. | σz=σr sin2θ | 
| Answer» B. σz=σr cosec2θ | |
| 7. | The relation between the stress component in x-direction on a horizontal plane in Cartesian coordinates and polar coordinates for vertical line load is ___________ | 
| A. | σx=σr tan2θ | 
| B. | σx=σr cosec2θ | 
| C. | σx=σr cosθ | 
| D. | σx=σr sin2θ | 
| Answer» E. | |
| 8. | When the ground is horizontal, \(α=\frac{π}{2}\) in constant K. What will be the radial stress σr due to vertical line load? | 
| A. | \(σ_r=\frac{Q cosθ}{r}\) | 
| B. | \(σ_r=\frac{2Q cosθ}{πr}\) | 
| C. | \(σ_r=\frac{Q sinθ}{r}\) | 
| D. | \(σ_r=\frac{2Q sinθ}{r}\) | 
| Answer» C. \(σ_r=\frac{Q sinθ}{r}\) | |
| 9. | In simple radial distribution, if \(σ_r=K \frac{Q cosθ}{r},\) then the value of K is ________ | 
| A. | K=\(\frac{2}{2α+sin2α}\) | 
| B. | K=2α+sinα | 
| C. | K=2α-sinα | 
| D. | K=sinα | 
| Answer» B. K=2α+sinα | |
| 10. | The compatibility equation in terms of stress components in polar coordinates are given by ____________ | 
| A. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=0\) | 
| B. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_θ )=0\) | 
| C. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r )=0\) | 
| D. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=1\) | 
| Answer» B. \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_θ )=0\) | |
| 11. | The equilibrium equation in polar coordinates is given by _____________ | 
| A. | \(\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}+\frac{σ_r-σ_θ}{r}=0\) | 
| B. | \(\frac{∂σ_r}{∂r}+\frac{∂τ_{rθ}}{∂θ}+\frac{σ_r-σ_θ}{r}=0\) | 
| C. | \(\frac{∂σ_r}{∂r}+\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}+\frac{σ_r-σ_θ}{r}=0\) | 
| D. | \(\frac{∂σ_r}{∂r}+\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}=0\) | 
| Answer» D. \(\frac{∂σ_r}{∂r}+\frac{1}{r} \frac{∂τ_{rθ}}{∂θ}=0\) | |
| 12. | In simple radial distribution, the three stress components σr, σθ and τrθ are given by ___________ | 
| A. | \(σ_r=K \frac{Q cosθ}{r}, σ_θ=0 \,and\, τ_{rθ}=0 \) | 
| B. | σr=KQ, σθ=0 and τrθ=0 | 
| C. | \(σ_r=\frac{Q cosθ}{r}, σ_θ=0 \,and\, τ_{rθ}=0\) | 
| D. | σr=0, σθ=0 and τrθ= 0 | 
| Answer» B. σr=KQ, σθ=0 and τrθ=0 | |