Explore topic-wise MCQs in Soil Mechanics.

This section includes 7 Mcqs, each offering curated multiple-choice questions to sharpen your Soil Mechanics knowledge and support exam preparation. Choose a topic below to get started.

1.

The shear stress component in xz-plane in Cartesian coordinates for horizontal line load is ___________

A. ( _{xz}= frac{2Q}{xzsin cos u2061 } )
B. ( _{xz}= frac{2Qxz^2}{ (x^2+z^2)^2} )
C. ( _{xz}= frac{2Qx^3}{ (x^2+z^2)^2} )
D. ( _{xz}= frac{2Qx^2 z}{ (x^2+z^2)^2} )
Answer» E.
2.

The stress component in x-direction on a horizontal plane in Cartesian coordinates for horizontal line load is ___________

A. ( _x= frac{2Q}{xzsin cos u2061 } )
B. ( _x= frac{2Qxz^2}{ (x^2+z^2)^2} )
C. ( _x= frac{2Qx^3}{ (x^2+z^2)^2} )
D. ( _x= frac{2Qx^2 z}{ (x^2+z^2)^2} )
Answer» D. ( _x= frac{2Qx^2 z}{ (x^2+z^2)^2} )
3.

The relation between the shear stress component in xz-plane in Cartesian coordinates and polar coordinates for vertical line load is ___________

A. <sub>xz</sub>= <sub>r</sub> tan<sup>2 u2061</sup>
B. <sub>xz</sub>= <sub>r</sub> cosec<sup>2 u2061</sup>
C. <sub>xz</sub>= <sub>r</sub> sin cos u2061
D. <sub>xz</sub>= <sub>r</sub> sin<sup>2 u2061</sup>
Answer» D. <sub>xz</sub>= <sub>r</sub> sin<sup>2 u2061</sup>
4.

The relation between the stress component in z-direction on a horizontal plane in Cartesian coordinates and polar coordinates for vertical line load is ___________

A. <sub>z</sub>= <sub>r</sub> cos<sup>2 u2061</sup>
B. <sub>z</sub>= <sub>r</sub> cosec<sup>2 u2061</sup>
C. <sub>z</sub>= <sub>r</sub> cos u2061
D. <sub>z</sub>= <sub>r</sub> sin<sup>2 u2061</sup>
Answer» B. <sub>z</sub>= <sub>r</sub> cosec<sup>2 u2061</sup>
5.

The relation between the stress component in x-direction on a horizontal plane in Cartesian coordinates and polar coordinates for vertical line load is ___________

A. <sub>x</sub>= <sub>r</sub> tan<sup>2 u2061</sup>
B. <sub>x</sub>= <sub>r</sub> cosec<sup>2 u2061</sup>
C. <sub>x</sub>= <sub>r</sub> cos u2061
D. <sub>x</sub>= <sub>r</sub> sin<sup>2 u2061</sup>
Answer» E.
6.

The compatibility equation in terms of stress components in polar coordinates are given by ____________

A. (( frac{ ^2}{ r^2} + frac{1}{r} frac{ }{ r}+ frac{1}{r^2} frac{ ^2}{ ^2} )( _r+ _ )=0 )
B. (( frac{ ^2}{ r^2} + frac{1}{r} frac{ }{ r}+ frac{1}{r^2} frac{ ^2}{ ^2} )( _ )=0 )
C. (( frac{ ^2}{ r^2} + frac{1}{r} frac{ }{ r}+ frac{1}{r^2} frac{ ^2}{ ^2} )( _r )=0 )
D. (( frac{ ^2}{ r^2} + frac{1}{r} frac{ }{ r}+ frac{1}{r^2} frac{ ^2}{ ^2} )( _r+ _ )=1 )
Answer» B. (( frac{ ^2}{ r^2} + frac{1}{r} frac{ }{ r}+ frac{1}{r^2} frac{ ^2}{ ^2} )( _ )=0 )
7.

The equilibrium equation in polar coordinates is given by _____________

A. ( frac{1}{r} frac{ _{r }}{ }+ frac{ _r- _ }{r}=0 )
B. ( frac{ _r}{ r}+ frac{ _{r }}{ }+ frac{ _r- _ }{r}=0 )
C. ( frac{ _r}{ r}+ frac{1}{r} frac{ _{r }}{ }+ frac{ _r- _ }{r}=0 )
D. ( frac{ _r}{ r}+ frac{1}{r} frac{ _{r }}{ }=0 )
Answer» D. ( frac{ _r}{ r}+ frac{1}{r} frac{ _{r }}{ }=0 )