 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 15 Mcqs, each offering curated multiple-choice questions to sharpen your Soil Mechanics knowledge and support exam preparation. Choose a topic below to get started.
| 1. | Find the influence factor for the vertical pressure at depth 5m for a uniformly loaded circular area of 80 kN/m2 load and radius of 1m. | 
| A. | 0.6212 | 
| B. | 0.0571 | 
| C. | 0.0328 | 
| D. | 0.0624 | 
| Answer» C. 0.0328 | |
| 2. | Find the vertical pressure at depth 5m for a uniformly loaded circular area of 80 kN/m2 load and radius of 5m. | 
| A. | 51.72 kN/m2 | 
| B. | 54.12 kN/m2 | 
| C. | 78.325 kN/m2 | 
| D. | 12.24 kN/m2 | 
| Answer» B. 54.12 kN/m2 | |
| 3. | For a uniformly loaded rectangular area, the Newmark’s influence factor given by ___________ | 
| A. | \(K= \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \) | 
| B. | \(K= \frac{1}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \) | 
| C. | \(K= \frac{1}{4π}\) | 
| D. | \(K= \frac{q}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \) | 
| Answer» C. \(K= \frac{1}{4π}\) | |
| 4. | The Westergaard’s influence factor is given by _____________ | 
| A. | \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \) | 
| B. | \(K_W=\frac{Q}{z^2} \) | 
| C. | \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{5}{2}} \frac{Q}{z^2} \) | 
| D. | \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^3}\frac{Q}{z^2} \) | 
| Answer» B. \(K_W=\frac{Q}{z^2} \) | |
| 5. | The Westergaard’s equation is given by ___________ | 
| A. | \(σ_z=\frac{1}{\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \) | 
| B. | \(σ_z=\frac{1}{2\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \) | 
| C. | \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}}\frac{Q}{z^2} \) | 
| D. | \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \) | 
| Answer» D. \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \) | |
| 6. | The influence factor for the vertical stress under the corner of a uniformly loaded rectangular area of size 1m*2m at depth 5m and load of 80 kN/m2 is given by ___________ | 
| A. | 0.6212 | 
| B. | 0.7465 | 
| C. | 0.0328 | 
| D. | 0.0624 | 
| Answer» D. 0.0624 | |
| 7. | The vertical stress under the corner of a uniformly loaded rectangular area of size 2m*4m at depth 5m and load of 80 kN/m2 is given by ___________ | 
| A. | 6.22 kN/m2 | 
| B. | 7.45 kN/m2 | 
| C. | 8.12 kN/m2 | 
| D. | 9.23 kN/m2 | 
| Answer» C. 8.12 kN/m2 | |
| 8. | The vertical stress under the corner of a uniformly loaded rectangular area of size a, b at depth z and m=a/z, n=b/z is given by ___________ | 
| A. | \(σ_z=\frac{2q’}{πz}\frac{1}{\left[1+(\frac{x}{z})^2\right]^2}\) | 
| B. | \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}\right] \) | 
| C. | \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \) | 
| D. | \(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) | 
| Answer» D. \(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) | |
| 9. | In Newmark’s influence chart method, the point below which pressure is required should lie within the loaded area. | 
| A. | True | 
| B. | False | 
| Answer» C. | |
| 10. | If a uniformly loaded circular area is divided into 44 sectors, then the influence value if is given by ___________ | 
| A. | \(\frac{1}{44} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) | 
| B. | \(44\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) | 
| C. | \(44\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2}\right] \) | 
| D. | \(\frac{1}{44} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2}\right] \) | 
| Answer» B. \(44\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) | |
| 11. | If the influence value \(i_f=\frac{1}{35} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) for a uniformly loaded circular area, then the circular area is divided into _________ sectors. | 
| A. | 20 | 
| B. | 35 | 
| C. | 7 | 
| D. | 14 | 
| Answer» C. 7 | |
| 12. | If a uniformly loaded circular area is divided into 20 sectors, then the influence value if is given by ___________ | 
| A. | \(\frac{1}{20}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\) | 
| B. | \(20\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\) | 
| C. | \(20\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2}\right]\) | 
| D. | \(\frac{1}{20}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2} \right]\) | 
| Answer» B. \(20\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\) | |
| 13. | The Newmark’s influence chart consists of _________ | 
| A. | a single circle only | 
| B. | a number of circles and radiating lines | 
| C. | bar diagram | 
| D. | small rectangular unit areas | 
| Answer» C. bar diagram | |
| 14. | _________ is more accurate method of determining the vertical stress at any point. | 
| A. | Isobar chart | 
| B. | equivalent point load method | 
| C. | Influence chart | 
| D. | Fenske’s chart | 
| Answer» D. Fenske’s chart | |
| 15. | _________ chart is used to find the vertical stress on Westergaard’s equation. | 
| A. | Influence chart | 
| B. | Isocurve chart | 
| C. | Isobar chart | 
| D. | Fenske’s chart | 
| Answer» B. Isocurve chart | |