Explore topic-wise MCQs in Digital Signal Processing Questions and Answers.

This section includes 7 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing Questions and Answers knowledge and support exam preparation. Choose a topic below to get started.

1.

What is the basic relationship between the spectrum o f the real band pass signal x(t) and the spectrum of the equivalent low pass signal xl(t)?

A. X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F-F_c)]\)
B. X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F+F_c)]\)
C. X (F) = \(\frac{1}{2} [X_l (F+F_c)+X_l^* (F-F_c)]\)
D. X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (-F-F_c)]\)
Answer» E.
2.

What is the expression for low pass signal component us(t) that can be expressed in terms of samples of the bandpass signal?

A. \(\sum_{n=-∞}^∞ (-1)^{n+r+1} x(2nT^{‘}-T^{‘}) \frac{sin⁡(π/(2T^{‘})) (t-2nT^{‘}+T^{‘})}{(π/(2T^{‘}))(t-2nT^{‘}+T^{‘})}\)
B. \(\sum_{n=-∞}^∞ (-1)^n x(2nT^{‘}) \frac{sin⁡(π/(2T^{‘})) (t-2nT^{‘})}{(π/(2T^{‘}))(t-2nT^{‘})}\)
C. All of the mentioned
D. None of the mentioned
Answer» B. \(\sum_{n=-∞}^∞ (-1)^n x(2nT^{‘}) \frac{sin⁡(π/(2T^{‘})) (t-2nT^{‘})}{(π/(2T^{‘}))(t-2nT^{‘})}\)
3.

What is the expression for low pass signal component uc(t) that can be expressed in terms of samples of the bandpass signal?

A. \(\sum_{n=-∞}^∞ (-1)^{n+r+1} x(2nT^{‘}-T^{‘}) \frac{sin⁡(π/(2T^{‘})) (t-2nT^{‘}+T^{‘})}{(π/(2T^{‘}))(t-2nT^{‘}+T^{‘})}\)
B. \(\sum_{n=-∞}^∞ (-1)^n x(2nT^{‘}) \frac{sin⁡(π/(2T^{‘})) (t-2nT^{‘})}{(π/(2T^{‘}))(t-2nT^{‘})}\)
C. All of the mentioned
D. None of the mentioned
Answer» C. All of the mentioned
4.

According to the sampling theorem for low pass signals with T1=1/B, then what is the expression for us(t) = ?

A. \(\sum_{m=-∞}^∞ u_c (mT_1) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1)}{(\frac{π}{T_1})(t-mT_1)}\)
B. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1+\frac{T_1}{2})}{(π/T_1)(t-mT_1+\frac{T_1}{2})}\)
C. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1-\frac{T_1}{2})}{(\frac{π}{T_1})(t-mT_1-\frac{T_1}{2})}\)
D. \(\sum_{m=-∞}^∞ u_c (mT_1) \frac{sin⁡(\frac{π}{T_1}) (t+mT_1)}{(\frac{π}{T_1})(t+mT_1)}\)
Answer» C. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1-\frac{T_1}{2})}{(\frac{π}{T_1})(t-mT_1-\frac{T_1}{2})}\)
5.

According to the sampling theorem for low pass signals with T1=1/B, then what is the expression for uc(t) = ?

A. \(\sum_{m=-∞}^∞ u_c (mT_1)\frac{sin⁡(\frac{π}{T_1}) (t-mT_1)}{(π/T_1)(t-mT_1)}\)
B. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1+T_1/2)}{(\frac{π}{T_1})(t-mT_1+\frac{T_1}{2})}\)
C. \(\sum_{m=-∞}^∞ u_c (mT_1)\frac{sin⁡(\frac{π}{T_1}) (t+mT_1)}{(\frac{π}{T_1})(t+mT_1)}\)
D. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t+mT_1+\frac{T_1}{2})}{(\frac{π}{T_1})(t+mT_1+\frac{T_1}{2})}\)
Answer» B. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1+T_1/2)}{(\frac{π}{T_1})(t-mT_1+\frac{T_1}{2})}\)
6.

What is the final result obtained by substituting Fc=kB-B/2, T= 1/2B and say n = 2m i.e., for even and n=2m-1 for odd in equation x(nT)= \(u_c (nT)cos⁡2πF_c nT-u_s (nT)sin⁡ 2πF_c nT\)?

A. \((-1)^m u_c (mT_1)-u_s\)
B. \(u_s (mT_1-\frac{T_1}{2})(-1)^{m+k+1}\)
C. None
D. \((-1)^m u_c (mT_1)- u_s (mT_1-\frac{T_1}{2})(-1)^{m+k+1}\)
Answer» E.
7.

The frequency shift can be achieved by multiplying the band pass signal as given in equation

A. x(t) = \(u_c (t) cos⁡2π F_c t-u_s (t) sin⁡2π F_c t\) by the quadrature carriers cos[2πFct] and sin[2πFct] and lowpass filtering the products to eliminate the signal components of 2Fc.
B. True
C. False
Answer» B. True