 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 13 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing knowledge and support exam preparation. Choose a topic below to get started.
| 1. | What is the basic relationship between the spectrum o f the real band pass signal x(t) and the spectrum of the equivalent low pass signal xl(t)? | 
| A. | X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F-F_c)]\) | 
| B. | X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F+F_c)]\) c) X (F) = \(\frac{1}{2} [X_l (F+F_c)+X_l^* (F-F_c)]\) d) X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (-F-F_ | 
| C. | +X_l^* (F-F_c)]\) b) X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F+F_c)]\) c) X (F) = \(\frac{1}{2} [X_l (F+F_c)+X_l^* (F-F_c)]\) | 
| D. | X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (-F-F_c)]\) | 
| Answer» E. | |
| 2. | What is the Fourier transform of x(t)? | 
| A. | X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F-F_c)]\) | 
| B. | X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F+F_c)]\) c) X (F) = \(\frac{1}{2} [X_l (F+F_c)+X_l^* (F-F_c)]\) d) X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (-F-F_ | 
| C. | +X_l^* (F-F_c)]\) b) X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (F+F_c)]\) c) X (F) = \(\frac{1}{2} [X_l (F+F_c)+X_l^* (F-F_c)]\) | 
| D. | X (F) = \(\frac{1}{2} [X_l (F-F_c)+X_l^* (-F-F_c)]\) | 
| Answer» E. | |
| 3. | What is the expression for low pass signal component us(t) that can be expressed in terms of samples of the bandpass signal? | 
| A. | \(\sum_{n=-∞}^∞ (-1)^{n+r+1} x(2nT^{‘}-T^{‘}) \frac{sin(π/(2T^{‘})) (t-2nT^{‘}+T^{‘})}{(π/(2T^{‘}))(t-2nT^{‘}+T^{‘})}\) | 
| B. | \(\sum_{n=-∞}^∞ (-1)^n x(2nT^{‘}) \frac{sin(π/(2T^{‘})) (t-2nT^{‘})}{(π/(2T^{‘}))(t-2nT^{‘})}\) | 
| C. | All of the mentioned | 
| D. | None of the mentioned | 
| Answer» B. \(\sum_{n=-∞}^∞ (-1)^n x(2nT^{‘}) \frac{sin(π/(2T^{‘})) (t-2nT^{‘})}{(π/(2T^{‘}))(t-2nT^{‘})}\) | |
| 4. | What is the expression for low pass signal component uc(t) that can be expressed in terms of samples of the bandpass signal? | 
| A. | \(\sum_{n=-∞}^∞ (-1)^{n+r+1} x(2nT^{‘}-T^{‘}) \frac{sin(π/(2T^{‘})) (t-2nT^{‘}+T^{‘})}{(π/(2T^{‘}))(t-2nT^{‘}+T^{‘})}\) | 
| B. | \(\sum_{n=-∞}^∞ (-1)^n x(2nT^{‘}) \frac{sin(π/(2T^{‘})) (t-2nT^{‘})}{(π/(2T^{‘}))(t-2nT^{‘})}\) | 
| C. | All of the mentioned | 
| D. | None of the mentioned | 
| Answer» C. All of the mentioned | |
| 5. | According to the sampling theorem for low pass signals with T1=1/B, then what is the expression for us(t) = ? | 
| A. | \(\sum_{m=-∞}^∞ u_c (mT_1) \frac{sin(\frac{π}{T_1}) (t-mT_1)}{(\frac{π}{T_1})(t-mT_1)}\) | 
| B. | \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin(\frac{π}{T_1}) (t-mT_1+\frac{T_1}{2})}{(π/T_1)(t-mT_1+\frac{T_1}{2})}\) | 
| C. | \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin(\frac{π}{T_1}) (t-mT_1-\frac{T_1}{2})}{(\frac{π}{T_1})(t-mT_1-\frac{T_1}{2})}\) | 
| D. | \(\sum_{m=-∞}^∞ u_c (mT_1) \frac{sin(\frac{π}{T_1}) (t+mT_1)}{(\frac{π}{T_1})(t+mT_1)}\) | 
| Answer» C. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin(\frac{π}{T_1}) (t-mT_1-\frac{T_1}{2})}{(\frac{π}{T_1})(t-mT_1-\frac{T_1}{2})}\) | |
| 6. | According to the sampling theorem for low pass signals with T1=1/B, then what is the expression for uc(t) = ? | 
| A. | \(\sum_{m=-∞}^∞ u_c (mT_1)\frac{sin(\frac{π}{T_1}) (t-mT_1)}{(π/T_1)(t-mT_1)}\) | 
| B. | \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin(\frac{π}{T_1}) (t-mT_1+T_1/2)}{(\frac{π}{T_1})(t-mT_1+\frac{T_1}{2})}\) | 
| C. | \(\sum_{m=-∞}^∞ u_c (mT_1)\frac{sin(\frac{π}{T_1}) (t+mT_1)}{(\frac{π}{T_1})(t+mT_1)}\) | 
| D. | \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin(\frac{π}{T_1}) (t+mT_1+\frac{T_1}{2})}{(\frac{π}{T_1})(t+mT_1+\frac{T_1}{2})}\) | 
| Answer» B. \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin(\frac{π}{T_1}) (t-mT_1+T_1/2)}{(\frac{π}{T_1})(t-mT_1+\frac{T_1}{2})}\) | |
| 7. | What is the new centre frequency for the increased bandwidth signal? | 
| A. | Fc‘= Fc+B/2+B’/2 | 
| B. | Fc‘= Fc+B/2-B’/2 | 
| C. | Fc‘= Fc-B/2-B’/2 | 
| D. | None of the mentioned | 
| Answer» C. Fc‘= Fc-B/2-B’/2 | |
| 8. | What is the reconstruction formula for the bandpass signal x(t) with samples taken at the rate of 2B samples per second? | 
| A. | \(\sum_{m=-\infty}^{\infty}x(mT)\frac{sin(π/2T) (t-mT)}{(π/2T)(t-mT)} cos2πF_c (t-mT)\) | 
| B. | \(\sum_{m=-\infty}^{\infty}x(mT)\frac{sin(π/2T) (t+mT)}{(π/2T)(t+mT)} cos2πF_c (t-mT)\) | 
| C. | \(\sum_{m=-\infty}^{\infty}x(mT)\frac{sin(π/2T) (t-mT)}{(π/2T)(t-mT)} cos2πF_c (t+mT)\) | 
| D. | \(\sum_{m=-\infty}^{\infty}x(mT)\frac{sin(π/2T) (t+mT)}{(π/2T)(t+mT)} cos2πF_c (t+mT)\) | 
| Answer» B. \(\sum_{m=-\infty}^{\infty}x(mT)\frac{sin(π/2T) (t+mT)}{(π/2T)(t+mT)} cos2πF_c (t-mT)\) | |
| 9. | Which low pass signal component occurs at the rate of B samples per second with odd numbered samples of x(t)? | 
| A. | uc – lowpass signal component | 
| B. | us – lowpass signal component | 
| C. | uc & us – lowpass signal component | 
| D. | none of the mentioned | 
| Answer» C. uc & us – lowpass signal component | |
| 10. | What is the final result obtained by substituting Fc=kB-B/2, T= 1/2B and say n = 2m i.e., for even and n=2m-1 for odd in equation x(nT)= \(u_c (nT)cos2πF_c nT-u_s (nT)sin 2πF_c nT\)? | 
| A. | \((-1)^m u_c (mT_1)-u_s\) | 
| B. | \(u_s (mT_1-\frac{T_1}{2})(-1)^{m+k+1}\) | 
| C. | None | 
| D. | \((-1)^m u_c (mT_1)- u_s (mT_1-\frac{T_1}{2})(-1)^{m+k+1}\) | 
| Answer» E. | |
| 11. | The frequency shift can be achieved by multiplying the band pass signal as given in equation x(t) = \(u_c (t) cos2π F_c t-u_s (t) sin2π F_c t\) by the quadrature carriers cos[2πFct] and sin[2πFct] and lowpass filtering the products to eliminate the signal components of 2Fc. | 
| A. | True | 
| B. | False | 
| Answer» B. False | |
| 12. | What is the new centre frequency for the increased bandwidth signal ? | 
| A. | F<sub>c</sub>‘= F<sub>c</sub>+B/2+B’/2 | 
| B. | F<sub>c</sub>‘= F<sub>c</sub>+B/2-B’/2 | 
| C. | F<sub>c</sub>‘= F<sub>c</sub>-B/2-B’/2 | 
| D. | None of the mentioned | 
| Answer» C. F<sub>c</sub>‚Äö√Ñ√∂‚àö√ë‚àö‚â§= F<sub>c</sub>-B/2-B‚Äö√Ñ√∂‚àö√ë‚àö¬•/2 | |
| 13. | Which low pass signal component occurs at the rate of B samples per second with even numbered samples of x(t)? | 
| A. | u<sub>c</sub>– lowpass signal component | 
| B. | u<sub>s</sub>– lowpass signal component | 
| C. | u<sub>c</sub> & u<sub>s</sub> – lowpass signal component | 
| D. | None of the mentioned | 
| Answer» B. u<sub>s</sub>‚Äö√Ñ√∂‚àö√ë‚àö¬® lowpass signal component | |