

MCQOPTIONS
Saved Bookmarks
This section includes 383 Mcqs, each offering curated multiple-choice questions to sharpen your NEET knowledge and support exam preparation. Choose a topic below to get started.
201. |
Dimensional formula of magnetic flux is [DCE 1993; IIT 1982; CBSE PMT 1989, 99; DPMT 2001; Kerala PMT 2005] |
A. | \[M{{L}^{2}}{{T}^{-2}}{{A}^{-1}}\] |
B. | \[M{{L}^{0}}{{T}^{-2}}{{A}^{-2}}\] |
C. | \[{{M}^{0}}{{L}^{-2}}{{T}^{-2}}{{A}^{-3}}\] |
D. | \[M{{L}^{2}}{{T}^{-2}}{{A}^{3}}\] |
Answer» B. \[M{{L}^{0}}{{T}^{-2}}{{A}^{-2}}\] | |
202. |
Dimensions of permeability are [CBSE PMT 1991; AIIMS 2003] |
A. | \[{{A}^{-2}}{{M}^{1}}{{L}^{1}}{{T}^{-2}}\] |
B. | \[ML{{T}^{-2}}\] |
C. | \[M{{L}^{0}}{{T}^{-1}}\] |
D. | \[{{A}^{-1}}ML{{T}^{2}}\] |
Answer» B. \[ML{{T}^{-2}}\] | |
203. |
The dimensions of stress are equal to [MP PET 1991, 2003] |
A. | Force |
B. | Pressure |
C. | Work |
D. | \[\frac{1}{\text{Pressure}}\] |
Answer» C. Work | |
204. |
The dimensional formula of wave number is |
A. | \[{{M}^{0}}{{L}^{0}}{{T}^{-1}}\] |
B. | \[{{M}^{0}}{{L}^{-1}}{{T}^{0}}\] |
C. | \[{{M}^{-1}}{{L}^{-1}}{{T}^{0}}\] |
D. | \[{{M}^{0}}{{L}^{0}}{{T}^{0}}\] |
Answer» C. \[{{M}^{-1}}{{L}^{-1}}{{T}^{0}}\] | |
205. |
The foundations of dimensional analysis were laid down by |
A. | Gallileo |
B. | Newton |
C. | Fourier |
D. | Joule |
Answer» D. Joule | |
206. |
An athletic coach told his team that muscle times speed equals power. What dimensions does he view for muscle |
A. | \[ML{{T}^{-2}}\] |
B. | \[M{{L}^{2}}{{T}^{-2}}\] |
C. | \[ML{{T}^{2}}\] |
D. | \[L\] |
Answer» B. \[M{{L}^{2}}{{T}^{-2}}\] | |
207. |
If \[L\] and \[R\] are respectively the inductance and resistance, then the dimensions of \[\frac{L}{R}\] will be [CPMT 1986; CBSE PMT 1988; Roorkee 1995; MP PET/PMT 1998; DCE 2002] |
A. | \[{{M}^{0}}{{L}^{0}}{{T}^{-1}}\] |
B. | \[{{M}^{0}}L{{T}^{0}}\] |
C. | \[{{M}^{0}}{{L}^{0}}T\] |
D. | Cannot be represented in terms of \[M,\,L\] and T |
Answer» D. Cannot be represented in terms of \[M,\,L\] and T | |
208. |
The dimension of \[\frac{1}{\sqrt{{{\varepsilon }_{0}}{{\mu }_{0}}}}\] is that of [SCRA 1986] |
A. | Velocity |
B. | Time |
C. | Capacitance |
D. | Distance |
Answer» B. Time | |
209. |
The Martians use force \[(F)\], acceleration \[(A)\] and time \[(T)\] as their fundamental physical quantities. The dimensions of length on Martians system are [DCE 1993] |
A. | \[F{{T}^{2}}\] |
B. | \[{{F}^{-1}}{{T}^{2}}\] |
C. | \[{{F}^{-1}}{{A}^{2}}{{T}^{-1}}\] |
D. | \[A{{T}^{2}}\] |
Answer» E. | |
210. |
The dimensions of \[C{{V}^{2}}\] matches with the dimensions of [DCE 1993] |
A. | \[{{L}^{2}}I\] |
B. | \[{{L}^{2}}{{I}^{2}}\] |
C. | \[L{{I}^{2}}\] |
D. | \[\frac{1}{LI}\] |
Answer» D. \[\frac{1}{LI}\] | |
211. |
The expression \[[M{{L}^{2}}{{T}^{-2}}]\] represents [JIPMER 1993, 97] |
A. | Pressure |
B. | Kinetic energy |
C. | Momentum |
D. | Power |
Answer» C. Momentum | |
212. |
The dimensions of physical quantity \[X\] in the equation Force \[=\frac{X}{\text{Density}}\] is given by [DCE 1993] |
A. | \[{{M}^{1}}{{L}^{4}}{{T}^{-2}}\] |
B. | \[{{M}^{2}}{{L}^{-2}}{{T}^{-1}}\] |
C. | \[{{M}^{2}}{{L}^{-2}}{{T}^{-2}}\] |
D. | \[{{M}^{1}}{{L}^{-2}}{{T}^{-1}}\] |
Answer» D. \[{{M}^{1}}{{L}^{-2}}{{T}^{-1}}\] | |
213. |
\[{{\mu }_{0}}\] and \[{{\varepsilon }_{0}}\] denote the permeability and permittivity of free space, the dimensions of \[{{\mu }_{0}}{{\varepsilon }_{0}}\] are |
A. | \[L{{T}^{-1}}\] |
B. | \[{{L}^{-2}}{{T}^{2}}\] |
C. | \[{{M}^{-1}}{{L}^{-3}}{{Q}^{2}}{{T}^{2}}\] |
D. | \[{{M}^{-1}}{{L}^{-3}}{{I}^{2}}{{T}^{2}}\] |
Answer» C. \[{{M}^{-1}}{{L}^{-3}}{{Q}^{2}}{{T}^{2}}\] | |
214. |
The quantity \[X=\frac{{{\varepsilon }_{0}}LV}{t}\]: \[{{\varepsilon }_{0}}\] is the permittivity of free space, \[L\]is length, \[V\] is potential difference and \[t\] is time. The dimensions of \[X\] are same as that of [IIT 2001] |
A. | Resistance |
B. | Charge |
C. | Voltage |
D. | Current |
Answer» E. | |
215. |
Which one has the dimensions different from the remaining three [CBSE PMT 1988] |
A. | Power |
B. | Work |
C. | Torque |
D. | Energy |
Answer» B. Work | |
216. |
Dimensions of frequency are [CPMT 1988] |
A. | \[{{M}^{0}}{{L}^{-1}}{{T}^{0}}\] |
B. | \[{{M}^{0}}{{L}^{0}}{{T}^{-1}}\] |
C. | \[{{M}^{0}}{{L}^{0}}T\] |
D. | \[M{{T}^{-2}}\] |
Answer» C. \[{{M}^{0}}{{L}^{0}}T\] | |
217. |
The velocity of a freely falling body changes as \[{{g}^{p}}{{h}^{q}}\] where g is acceleration due to gravity and \[h\] is the height. The values of \[p\] and \[q\] are [NCERT 1983; EAMCET 1994] |
A. | \[1,\frac{1}{2}\] |
B. | \[{{M}^{0}}{{L}^{2}}{{T}^{-2}}\] |
C. | \[\frac{1}{2},\,1\] |
D. | \[1,\,1\] |
Answer» C. \[\frac{1}{2},\,1\] | |
218. |
Which of the following pairs of physical quantities has the same dimensions [CPMT 1978; NCERT 1987] |
A. | Work and power |
B. | Momentum and energy |
C. | Force and power |
D. | Work and energy |
Answer» E. | |
219. |
The dimensions of "time constant" \[\frac{L}{R}\] during growth and decay of current in all inductive circuit is same as that of [MP PET 1993; EAMCET 1994] |
A. | Constant |
B. | Resistance |
C. | Current |
D. | Time |
Answer» E. | |
220. |
The period of a body under SHM i.e. presented by \[T={{P}^{a}}{{D}^{b}}{{S}^{c}}\]; where \[P\] is pressure, \[D\] is density and \[S\] is surface tension. The value of \[a,\,b\] and \[c\] are [CPMT 1981] |
A. | \[-\frac{3}{2},\,\frac{1}{2},\,1\] |
B. | \[-1,\,-2,\,3\] |
C. | \[\frac{1}{2},\,-\frac{3}{2},\,-\frac{1}{2}\] |
D. | \[1,\,2,\,\frac{1}{3}\] |
Answer» B. \[-1,\,-2,\,3\] | |
221. |
If \[C\] and \[L\] denote capacitance and inductance respectively, then the dimensions of \[LC\] are [CPMT 1981; MP PET 1997] |
A. | \[{{M}^{0}}{{L}^{0}}{{T}^{0}}\] |
B. | \[{{M}^{0}}{{L}^{0}}{{T}^{2}}\] |
C. | \[{{M}^{2}}{{L}^{0}}{{T}^{2}}\] |
D. | \[ML{{T}^{2}}\] |
Answer» C. \[{{M}^{2}}{{L}^{0}}{{T}^{2}}\] | |
222. |
Dimensional formula of heat energy is [CPMT 1976, 81, 86, 91] |
A. | \[M{{L}^{2}}{{T}^{-2}}\] |
B. | \[ML{{T}^{-1}}\] |
C. | \[{{M}^{0}}{{L}^{0}}{{T}^{-2}}\] |
D. | None of these |
Answer» B. \[ML{{T}^{-1}}\] | |
223. |
\[ML{{T}^{-1}}\] represents the dimensional formula of [CPMT 1975] |
A. | Power |
B. | Momentum |
C. | Force |
D. | Couple |
Answer» C. Force | |
224. |
The dimensions of calorie are [CPMT 1985] |
A. | \[M{{L}^{2}}{{T}^{-2}}\] |
B. | \[ML{{T}^{-2}}\] |
C. | \[M{{L}^{2}}{{T}^{-1}}\] |
D. | \[M{{L}^{2}}{{T}^{-3}}\] |
Answer» B. \[ML{{T}^{-2}}\] | |
225. |
Dimensional formula of capacitance is [CPMT 1978; MP PMT 1979; IIT 1983] |
A. | \[{{c}^{2}}{{g}^{0}}{{p}^{-2}}\] |
B. | \[M{{L}^{2}}{{T}^{4}}{{A}^{-2}}\] |
C. | \[ML{{T}^{-4}}{{A}^{2}}\] |
D. | \[{{M}^{-1}}{{L}^{-2}}{{T}^{-4}}{{A}^{-2}}\] |
Answer» B. \[M{{L}^{2}}{{T}^{4}}{{A}^{-2}}\] | |
226. |
Dimensional formula of velocity of sound is |
A. | \[{{M}^{0}}L{{T}^{-2}}\] |
B. | \[L{{T}^{0}}\] |
C. | \[{{M}^{0}}L{{T}^{-1}}\] |
D. | \[{{M}^{0}}{{L}^{-1}}{{T}^{-1}}\] |
Answer» D. \[{{M}^{0}}{{L}^{-1}}{{T}^{-1}}\] | |
227. |
Dimensional formula of stress is |
A. | \[{{M}^{0}}L{{T}^{-2}}\] |
B. | \[{{M}^{0}}{{L}^{-1}}{{T}^{-2}}\] |
C. | \[M{{L}^{-1}}{{T}^{-2}}\] |
D. | \[M{{L}^{2}}{{T}^{-2}}\] |
Answer» D. \[M{{L}^{2}}{{T}^{-2}}\] | |
228. |
The dimensions of coefficient of thermal conductivity is [MP PMT 1993] |
A. | \[M{{L}^{2}}{{T}^{-2}}{{K}^{-1}}\] |
B. | \[ML{{T}^{-3}}{{K}^{-1}}\] |
C. | \[ML{{T}^{-2}}{{K}^{-1}}\] |
D. | \[ML{{T}^{-3}}K\] |
Answer» C. \[ML{{T}^{-2}}{{K}^{-1}}\] | |
229. |
The dimensions of resistivity in terms of \[M,\,L,\,T\] and \[Q\] where \[Q\] stands for the dimensions of charge, is [MP PET 1993] |
A. | \[M{{L}^{3}}{{T}^{-1}}{{Q}^{-2}}\] |
B. | \[M{{L}^{3}}{{T}^{-2}}{{Q}^{-1}}\] |
C. | \[M{{L}^{2}}{{T}^{-1}}{{Q}^{-1}}\] |
D. | \[ML{{T}^{-1}}{{Q}^{-1}}\] |
Answer» B. \[M{{L}^{3}}{{T}^{-2}}{{Q}^{-1}}\] | |
230. |
The dimensions of Farad are [MP PET 1993] |
A. | \[{{M}^{-1}}{{L}^{-2}}{{T}^{2}}{{Q}^{2}}\] |
B. | \[{{M}^{-1}}{{L}^{-2}}TQ\] |
C. | \[{{M}^{-1}}{{L}^{-2}}{{T}^{-2}}Q\] |
D. | \[{{M}^{-1}}{{L}^{-2}}T{{Q}^{2}}\] |
Answer» B. \[{{M}^{-1}}{{L}^{-2}}TQ\] | |
231. |
The velocity of water waves \[v\] may depend upon their wavelength \[\lambda \], the density of water \[\rho \] and the acceleration due to gravity \[g\]. The method of dimensions gives the relation between these quantities as [NCERT 1979; CET 1992; MP PET 2001; UPSEAT 2000] |
A. | \[{{v}^{2}}rg\] |
B. | \[{{v}^{2}}\propto g\lambda \rho \] |
C. | \[{{v}^{2}}\propto g\lambda \] |
D. | \[{{v}^{2}}\propto {{g}^{-1}}{{\lambda }^{-3}}\] |
Answer» D. \[{{v}^{2}}\propto {{g}^{-1}}{{\lambda }^{-3}}\] | |
232. |
The quantities \[A\]and \[\times \] are related by the relation, \[[ML{{T}^{-1}}]\], where \[m\] is the linear density and \[A\] is the force. The dimensions of \[B\] are of |
A. | Pressure |
B. | Work |
C. | Latent heat |
D. | None of the above |
Answer» D. None of the above | |
233. |
The frequency of vibration \[f\] of a mass \[m\] suspended from a spring of spring constant \[K\]is given by a relation of this type \[f=C\,{{m}^{x}}{{K}^{y}}\]; where \[C\] is a dimensionless quantity. The value of \[x\] and \[y\] are [CBSE PMT 1990] |
A. | \[x=\frac{1}{2},\,y=\frac{1}{2}\] |
B. | \[x=-\frac{1}{2},\,y=-\frac{1}{2}\] |
C. | \[x=\frac{1}{2},\,y=-\frac{1}{2}\] |
D. | \[x=-\frac{1}{2},\,y=\frac{1}{2}\] |
Answer» E. | |
234. |
A spherical body of mass \[m\] and radius \[r\] is allowed to fall in a medium of viscosity \[\eta \]. The time in which the velocity of the body increases from zero to 0.63 times the terminal velocity \[(v)\] is called time constant \[(\tau )\]. Dimensionally \[\tau \] can be represented by [AIIMS 1987] |
A. | \[\frac{m{{r}^{2}}}{6\pi \eta }\] |
B. | \[\sqrt{\left( \frac{6\pi mr\eta }{{{g}^{2}}} \right)}\] |
C. | \[\frac{m}{6\pi \eta rv}\] |
D. | None of the above |
Answer» E. | |
235. |
Dimensional formula \[M{{L}^{2}}{{T}^{-3}}\] represents [EAMCET 1981; MP PMT 1996, 2001] |
A. | Force |
B. | Power |
C. | Energy |
D. | Work |
Answer» C. Energy | |
236. |
Of the following quantities, which one has dimensions different from the remaining three [AIIMS 1987; CBSE PMT 1993] |
A. | Energy per unit volume |
B. | Force per unit area |
C. | Product of voltage and charge per unit volume |
D. | Angular momentum per unit mass |
Answer» E. | |
237. |
If \[V\] denotes the potential difference across the plates of a capacitor of capacitance \[C\], the dimensions of \[C{{V}^{2}}\]are [CPMT 1982] |
A. | Not expressible in \[MLT\] |
B. | \[ML{{T}^{-2}}\] |
C. | \[{{M}^{2}}L{{T}^{-1}}\] |
D. | \[M{{L}^{2}}{{T}^{-2}}\] |
Answer» E. | |
238. |
The equation of state of some gases can be expressed as \[\left( P+\frac{a}{{{V}^{2}}} \right)\,(V-b)=RT\]. Here \[P\] is the pressure, \[V\] is the volume, \[T\] is the absolute temperature and \[a,\,b,\,R\] are constants. The dimensions of \['a'\] are [CBSE PMT 1991, 96; NCERT 1984; MP PET 1992; CPMT 1974, 79, 87, 97; MP PMT 1992, 94; MNR 1995; AFMC 1995] |
A. | \[M{{L}^{5}}{{T}^{-2}}\] |
B. | \[M{{L}^{-1}}{{T}^{-2}}\] |
C. | \[{{M}^{0}}{{L}^{3}}{{T}^{0}}\] |
D. | \[{{M}^{0}}{{L}^{6}}{{T}^{0}}\] |
Answer» B. \[M{{L}^{-1}}{{T}^{-2}}\] | |
239. |
Planck's constant has the dimensions (unit) of [CPMT 1983, 84, 85, 90, 91; AIIMS 1985; MPPMT1987; EAMCET 1990; RPMT 1999; CBSE PMT 2001; MP PET 2002; KCET 2004] |
A. | Energy |
B. | Linear momentum |
C. | Work |
D. | Angular momentum |
Answer» E. | |
240. |
Which of the following is dimensionally correct |
A. | Pressure = Energy per unit area |
B. | Pressure = Energy per unit volume |
C. | Pressure = Force per unit volume |
D. | Pressure = Momentum per unit volume per unit time |
Answer» C. Pressure = Force per unit volume | |
241. |
Out of the following, the only pair that does not have identical dimensions is [MP PET/PMT 1998; BHU 1997] |
A. | Angular momentum and Planck's constant |
B. | Moment of inertia and moment of a force |
C. | Work and torque |
D. | Impulse and momentum |
Answer» C. Work and torque | |
242. |
The dimensional formula for Planck's constant \[(h)\] is [DPMT 1987; MP PMT 1983, 96; IIT 1985; MPPET 1995; AFMC 2003; RPMT 1999; Kerala PMT 2002] |
A. | \[M{{L}^{-2}}{{T}^{-3}}\] |
B. | \[M{{L}^{2}}{{T}^{-2}}\] |
C. | \[M{{L}^{2}}{{T}^{-1}}\] |
D. | \[M{{L}^{-2}}{{T}^{-2}}\] |
Answer» D. \[M{{L}^{-2}}{{T}^{-2}}\] | |
243. |
Dimensional formula \[M{{L}^{-1}}{{T}^{-2}}\] does not represent the physical quantity [Manipal MEE 1995] |
A. | Young's modulus of elasticity |
B. | Stress |
C. | Strain |
D. | Pressure |
Answer» D. Pressure | |
244. |
The dimensional formula for the modulus of rigidity is [MNR 1984; IIT 1982; MP PET 2000] |
A. | \[M{{L}^{2}}{{T}^{-2}}\] |
B. | \[M{{L}^{-1}}{{T}^{-3}}\] |
C. | \[M{{L}^{-2}}{{T}^{-2}}\] |
D. | \[M{{L}^{-1}}{{T}^{-2}}\] |
Answer» E. | |
245. |
Dimensional formula for angular momentum is [CBSE PMT 1988, 92; EAMCET 1995; DPMT 1987; CMC Vellore 1982; CPMT 1973, 82, 86; MP PMT 1987; BHU 1995; IIT 1983; Pb. PET 2000] |
A. | \[M{{L}^{2}}{{T}^{-2}}\] |
B. | \[M{{L}^{2}}{{T}^{-1}}\] |
C. | \[ML{{T}^{-1}}\] |
D. | \[{{M}^{0}}{{L}^{2}}{{T}^{-2}}\] |
Answer» C. \[ML{{T}^{-1}}\] | |
246. |
The dimensional formula for impulse is [EAMCET 1981; CBSE PMT 1991; CPMT 1978; AFMC 1998; BCECE 2003] |
A. | \[ML{{T}^{-2}}\] |
B. | \[ML{{T}^{-1}}\] |
C. | \[M{{L}^{2}}{{T}^{-1}}\] |
D. | \[{{M}^{2}}L{{T}^{-1}}\] |
Answer» C. \[M{{L}^{2}}{{T}^{-1}}\] | |
247. |
The dimensions of couple are [CPMT 1972; JIPMER 1993] |
A. | \[M{{L}^{2}}{{T}^{-2}}\] |
B. | \[ML{{T}^{-2}}\] |
C. | \[M{{L}^{-1}}{{T}^{-3}}\] |
D. | \[M{{L}^{-2}}{{T}^{-2}}\] |
Answer» B. \[ML{{T}^{-2}}\] | |
248. |
Density of a liquid in CGS system is 0.625\[g/c{{m}^{3}}\]. What is its magnitude in SI system? [J&K CET 2005] |
A. | 0.625 |
B. | 0.0625 |
C. | 0.00625 |
D. | 625 |
Answer» E. | |
249. |
The ratio of the dimension of Planck's constant and that of moment of inertia is the dimension of? [CBSE PMT 2005] |
A. | Frequency |
B. | Velocity |
C. | Angular momentum |
D. | Time |
Answer» B. Velocity | |
250. |
Which of the following group have different dimension? [IIT JEE 2005] |
A. | Potential difference, EMF, voltage |
B. | Pressure, stress, young's modulus |
C. | Heat, energy, work-done |
D. | Dipole moment, electric flux, electric field |
Answer» E. | |