MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 4651. |
The greatest coefficient in the expansion of \[{{(1+x)}^{2n+2}}\] is [BIT Ranchi 1992] |
| A. | \[\frac{(2n)!}{{{(n!)}^{2}}}\] |
| B. | \[\frac{(2n+2)!}{{{\{(n+1)!\}}^{2}}}\] |
| C. | \[\frac{(2n+2)!}{n!(n+1)!}\] |
| D. | \[\frac{(2n)!}{n!(n+1)!}\] |
| Answer» C. \[\frac{(2n+2)!}{n!(n+1)!}\] | |
| 4652. |
The middle term in the expansion of \[{{(1+x)}^{2n}}\] is [DCE 2002] |
| A. | \[\frac{(2n)!}{n!}{{x}^{2}}\] |
| B. | \[\frac{(2n)!}{n!(n-1)!}{{x}^{n+1}}\] |
| C. | \[\frac{(2n)!}{{{(n!)}^{2}}}{{x}^{n}}\] |
| D. | \[\frac{(2n)!}{(n+1)!(n-1)!}\,{{x}^{n}}\] |
| Answer» D. \[\frac{(2n)!}{(n+1)!(n-1)!}\,{{x}^{n}}\] | |
| 4653. |
The term independent of x in the expansion of \[{{\left( {{x}^{2}}-\frac{3\sqrt{3}}{{{x}^{3}}} \right)}^{10}}\] is [RPET 1999] |
| A. | 153090 |
| B. | 150000 |
| C. | 150090 |
| D. | 153180 |
| Answer» B. 150000 | |
| 4654. |
The coefficient of middle term in the expansion of \[{{(1+x)}^{10}}\] is [UPSEAT 2001] |
| A. | \[\frac{10!}{5!\,6!}\] |
| B. | \[\frac{10\,!}{{{(5\,!)}^{2}}}\] |
| C. | \[\frac{10\,!}{5\,!\,7\,!}\] |
| D. | None of these |
| Answer» C. \[\frac{10\,!}{5\,!\,7\,!}\] | |
| 4655. |
In \[{{\left( \sqrt[3]{2}+\frac{1}{\sqrt[3]{3}} \right)}^{n}}\] if the ratio of \[{{7}^{th}}\] term from the beginning to the \[{{7}^{th}}\] term from the end is \[\frac{1}{6}\], then \[n=\] |
| A. | 7 |
| B. | 8 |
| C. | 9 |
| D. | None of these |
| Answer» D. None of these | |
| 4656. |
If the middle term in the expansion of \[{{\left( {{x}^{2}}+\frac{1}{x} \right)}^{n}}\]is \[924{{x}^{6}}\], then \[n=\] |
| A. | 10 |
| B. | 12 |
| C. | 14 |
| D. | None of these |
| Answer» C. 14 | |
| 4657. |
In the expansion of \[{{\left( x-\frac{3}{{{x}^{2}}} \right)}^{9}},\] the term independent of x is [Karnataka CET 2001] |
| A. | Non existent |
| B. | \[^{9}{{C}_{2}}\] |
| C. | 2268 |
| D. | -2268 |
| Answer» E. | |
| 4658. |
The term independent of x in the expansion of \[{{\left( 2x-\frac{3}{x} \right)}^{6}}\] is [Pb. CET 1999] |
| A. | 4320 |
| B. | 216 |
| C. | -216 |
| D. | -4320 |
| Answer» E. | |
| 4659. |
The term independent of x in the expansion \[{{\left( {{x}^{2}}-\frac{1}{3x} \right)}^{9}}\]is [Roorkee 1981; RPET 1990, 95; Pb. CET 2000] |
| A. | \[\frac{28}{81}\] |
| B. | \[\frac{28}{243}\] |
| C. | \[-\frac{28}{243}\] |
| D. | \[-\frac{28}{81}\] |
| Answer» C. \[-\frac{28}{243}\] | |
| 4660. |
The term independent of x in the expansion of \[{{\left( {{x}^{2}}-\frac{1}{x} \right)}^{9}}\] is [EAMCET 1982; MP PET 2003] |
| A. | 1 |
| B. | -1 |
| C. | -48 |
| D. | None of these |
| Answer» E. | |
| 4661. |
In the expansion of \[{{\left( x+\frac{2}{{{x}^{2}}} \right)}^{15}}\], the term independent of \[x\] is [MP PET 1993; Pb. CET 2002] |
| A. | \[^{15}{{C}_{6}}{{2}^{6}}\] |
| B. | \[^{15}{{C}_{5}}{{2}^{5}}\] |
| C. | \[^{15}{{C}_{4}}{{2}^{4}}\] |
| D. | \[^{15}{{C}_{8}}{{2}^{8}}\] |
| Answer» C. \[^{15}{{C}_{4}}{{2}^{4}}\] | |
| 4662. |
The term independent of x in \[{{\left( 2x-\frac{1}{2{{x}^{2}}} \right)}^{12}}\]is [RPET 1985] |
| A. | -7930 |
| B. | -495 |
| C. | 495 |
| D. | 7920 |
| Answer» E. | |
| 4663. |
\[{{16}^{th}}\] term in the expansion of \[{{(\sqrt{x}-\sqrt{y})}^{17}}\] is |
| A. | \[136x{{y}^{7}}\] |
| B. | \[136xy\] |
| C. | \[-136x{{y}^{15/2}}\] |
| D. | \[-136x{{y}^{2}}\] |
| Answer» D. \[-136x{{y}^{2}}\] | |
| 4664. |
In the expansion of \[{{\left( \frac{3{{x}^{2}}}{2}-\frac{1}{3x} \right)}^{9}}\],the term independent of x is [MNR 1981; AMU 1983; JMI EEE 2001] |
| A. | \[^{9}{{C}_{3}}.\frac{1}{{{6}^{3}}}\] |
| B. | \[^{9}{{C}_{3}}{{\left( \frac{3}{2} \right)}^{3}}\] |
| C. | \[^{9}{{C}_{3}}\] |
| D. | None of these |
| Answer» B. \[^{9}{{C}_{3}}{{\left( \frac{3}{2} \right)}^{3}}\] | |
| 4665. |
The term independent of x in the expansion of \[{{\left( \sqrt{\frac{x}{3}}+\frac{3}{2{{x}^{2}}} \right)}^{10}}\] will be [IIT 1965; BIT Ranchi 1993; KCET 2000; UPSEAT 2001] |
| A. | 44230 |
| B. | 44291 |
| C. | 44232 |
| D. | None of these |
| Answer» C. 44232 | |
| 4666. |
If in the expansion of \[{{(1+x)}^{21}}\], the coefficients of \[{{x}^{r}}\] and \[{{x}^{r+1}}\] be equal, then r is equal to [UPSEAT 2004] |
| A. | 9 |
| B. | 10 |
| C. | 11 |
| D. | 12 |
| Answer» C. 11 | |
| 4667. |
The coefficient of \[{{x}^{32}}\] in the expansion of \[{{\left( {{x}^{4}}-\frac{1}{{{x}^{3}}} \right)}^{15}}\] is [Karnataka CET 2003; Pb. CET 2000] |
| A. | \[^{15}{{C}_{4}}\] |
| B. | \[^{15}{{C}_{3}}\] |
| C. | \[^{15}{{C}_{2}}\] |
| D. | \[^{15}{{C}_{5}}\] |
| Answer» B. \[^{15}{{C}_{3}}\] | |
| 4668. |
The coefficient of \[{{x}^{5}}\] in the expansion of \[{{(x+3)}^{6}}\] is [DCE 2002] |
| A. | 18 |
| B. | 6 |
| C. | 12 |
| D. | 10 |
| Answer» B. 6 | |
| 4669. |
Coefficient of \[{{x}^{2}}\] in the expansion of \[{{\left( x-\frac{1}{2x} \right)}^{8}}\] is [UPSEAT 2002] |
| A. | \[\frac{1}{7}\] |
| B. | \[\frac{-1}{7}\] |
| C. | -7 |
| D. | 7 |
| Answer» D. 7 | |
| 4670. |
In the expansion of \[{{(1+x)}^{n}}\]the coefficient of pth and \[{{(p+1)}^{th}}\] terms are respectively p and q. Then \[p+q=\] [EAMCET 2002] |
| A. | \[n+3\] |
| B. | \[n+1\] |
| C. | \[n+2\] |
| D. | \[n\] |
| Answer» C. \[n+2\] | |
| 4671. |
If the second, third and fourth term in the expansion of \[{{(x+a)}^{n}}\] are 240, 720 and 1080 respectively, then the value of n is [Kurukshetra CEE 1991; DCE 1995, 2001] |
| A. | 15 |
| B. | 20 |
| C. | 10 |
| D. | 5 |
| Answer» E. | |
| 4672. |
If the coefficients of \[{{x}^{2}}\]and \[{{x}^{3}}\]in the expansion of \[{{(3+ax)}^{9}}\] are the same, then the value of a is [DCE 2001] |
| A. | \[-\frac{7}{9}\] |
| B. | \[-\frac{9}{7}\] |
| C. | \[\frac{7}{9}\] |
| D. | \[\frac{9}{7}\] |
| Answer» E. | |
| 4673. |
The coefficient of \[{{x}^{-9}}\] in the expansion of \[{{\left( \frac{{{x}^{2}}}{2}-\frac{2}{x} \right)}^{9}}\] is [Kerala (Engg.) 2001] |
| A. | 512 |
| B. | -512 |
| C. | 521 |
| D. | 251 |
| Answer» C. 521 | |
| 4674. |
\[{{r}^{th}}\]term in the expansion of \[{{(a+2x)}^{n}}\]is |
| A. | \[\frac{n(n+1)....(n-r+1)}{r!}{{a}^{n-r+1}}{{(2x)}^{r}}\] |
| B. | \[\frac{n(n-1)....(n-r+2)}{(r-1)\,!}{{a}^{n-r+1}}{{(2x)}^{r-1}}\] |
| C. | \[\frac{n(n+1)....(n-r)}{(r+1)!}{{a}^{n-r}}{{(x)}^{r}}\] |
| D. | None of these |
| Answer» C. \[\frac{n(n+1)....(n-r)}{(r+1)!}{{a}^{n-r}}{{(x)}^{r}}\] | |
| 4675. |
If the coefficients of second, third and fourth term in the expansion of \[{{(1+x)}^{2n}}\] are in A.P., then \[2{{n}^{2}}-9n+7\] is equal to [AMU 2001; MP PET 2004] |
| A. | -1 |
| B. | 0 |
| C. | 1 |
| D. | 44230 |
| Answer» C. 1 | |
| 4676. |
The coefficient of \[{{x}^{5}}\] in the expansion of \[{{(1+x)}^{21}}+{{(1+x)}^{22}}+..........+{{(1+x)}^{30}}\] is [UPSEAT 2001] |
| A. | \[^{51}{{C}_{5}}\] |
| B. | \[^{9}{{C}_{5}}\] |
| C. | \[^{31}{{C}_{6}}{{-}^{21}}{{C}_{6}}\] |
| D. | \[^{30}{{C}_{5}}{{+}^{20}}{{C}_{5}}\] |
| Answer» D. \[^{30}{{C}_{5}}{{+}^{20}}{{C}_{5}}\] | |
| 4677. |
The coefficient of \[{{x}^{39}}\] in the expansion of \[{{\left( {{x}^{4}}-\frac{1}{{{x}^{3}}} \right)}^{15}}\] is [MP PET 2001] |
| A. | -455 |
| B. | -105 |
| C. | 105 |
| D. | 455 |
| Answer» B. -105 | |
| 4678. |
If the coefficient of 4th term in the expansion of \[{{(a+b)}^{n}}\] is 56, then n is [AMU 2000] |
| A. | 12 |
| B. | 10 |
| C. | 8 |
| D. | 6 |
| Answer» D. 6 | |
| 4679. |
If coefficients of \[{{(2r+1)}^{th}}\] term and \[{{(r+2)}^{th}}\] term are equal in the expansion of \[{{(1+x)}^{43}},\] then the value of r will be [UPSEAT 1999] |
| A. | 14 |
| B. | 15 |
| C. | 13 |
| D. | 16 |
| Answer» B. 15 | |
| 4680. |
In the expansion of \[{{(1+x+{{x}^{3}}+{{x}^{4}})}^{10}},\] the coefficient of \[{{x}^{4}}\] is [MP PET 2000] |
| A. | \[^{40}{{C}_{4}}\] |
| B. | \[^{10}{{C}_{4}}\] |
| C. | 210 |
| D. | 310 |
| Answer» E. | |
| 4681. |
If coefficients of 2nd, 3rd and 4th terms in the binomial expansion of \[{{(1+x)}^{n}}\] are in A.P., then \[{{n}^{2}}-9n\] is equal to [RPET 1999; UPSEAT 2002] |
| A. | -7 |
| B. | 7 |
| C. | 14 |
| D. | -14 |
| Answer» C. 14 | |
| 4682. |
If \[{{x}^{m}}\]occurs in the expansion of \[{{\left( x+\frac{1}{{{x}^{2}}} \right)}^{2n}},\]then the coefficient of \[{{x}^{m}}\] is [UPSEAT 1999] |
| A. | \[\frac{(2n)!}{(m)!\,(2n-m)!}\] |
| B. | \[\frac{(2n)!\,3!\,3!}{(2n-m)!}\] |
| C. | \[\frac{(2n)!}{\left( \frac{2n-m}{3} \right)\,!\,\left( \frac{4n+m}{3} \right)\,!}\] |
| D. | None of these |
| Answer» D. None of these | |
| 4683. |
If in the expansion of \[{{(1+x)}^{m}}{{(1-x)}^{n}}\], the coefficient of x and \[{{x}^{2}}\]are 3 and - 6 respectively, then m is [IIT 1999; MP PET 2000] |
| A. | 6 |
| B. | 9 |
| C. | 12 |
| D. | 24 |
| Answer» D. 24 | |
| 4684. |
If the coefficients of \[{{r}^{th}}\]term and \[{{(r+4)}^{th}}\]term are equal in the expansion of \[{{(1+x)}^{20}}\], then the value of r will be [RPET 1985, 97; Kerala (Engg.) 2001; MP PET 2002] |
| A. | 7 |
| B. | 8 |
| C. | 9 |
| D. | 10 |
| Answer» D. 10 | |
| 4685. |
If the coefficients of \[{{x}^{7}}\] and \[{{x}^{8}}\]in \[{{\left( 2+\frac{x}{3} \right)}^{n}}\]are equal, then n is [EAMCET 1983; Kurukshetra CEE 1998; DCE 2000; RPET 2001; UPSEAT 2001] |
| A. | 56 |
| B. | 55 |
| C. | 45 |
| D. | 15 |
| Answer» C. 45 | |
| 4686. |
The coefficient of \[{{x}^{32}}\]in the expansion of \[{{\left( {{x}^{4}}-\frac{1}{{{x}^{3}}} \right)}^{15}}\] is [MP PET 1994] |
| A. | \[^{15}{{C}_{5}}\] |
| B. | \[^{15}{{C}_{6}}\] |
| C. | \[^{15}{{C}_{4}}\] |
| D. | \[^{15}{{C}_{7}}\] |
| Answer» D. \[^{15}{{C}_{7}}\] | |
| 4687. |
The coefficient of \[{{x}^{53}}\] in the following expansion \[\sum\limits_{m=0}^{100}{{{\,}^{100}}{{C}_{m}}{{(x-3)}^{100-m}}}{{.2}^{m}}\]is |
| A. | \[^{100}{{C}_{47}}\] |
| B. | \[^{100}{{C}_{53}}\] |
| C. | \[{{-}^{100}}{{C}_{53}}\] |
| D. | \[{{-}^{100}}{{C}_{100}}\] |
| Answer» D. \[{{-}^{100}}{{C}_{100}}\] | |
| 4688. |
The coefficient of \[{{x}^{-7}}\] in the expansion of \[{{\left( ax-\frac{1}{b{{x}^{2}}} \right)}^{11}}\] will be [IIT 1967; RPET 1996; Pb. CET 2003] |
| A. | \[\frac{462{{a}^{6}}}{{{b}^{5}}}\] |
| B. | \[\frac{462{{a}^{5}}}{{{b}^{6}}}\] |
| C. | \[\frac{-462{{a}^{5}}}{{{b}^{6}}}\] |
| D. | \[\frac{-462{{a}^{6}}}{{{b}^{5}}}\] |
| Answer» C. \[\frac{-462{{a}^{5}}}{{{b}^{6}}}\] | |
| 4689. |
If the coefficients of \[{{5}^{th}}\], \[{{6}^{th}}\]and \[{{7}^{th}}\] terms in the expansion of \[{{(1+x)}^{n}}\]be in A.P., then n = [Roorkee 1984; Pb. CET 1999] |
| A. | 7 only |
| B. | 14 only |
| C. | 7 or 14 |
| D. | None of these |
| Answer» D. None of these | |
| 4690. |
.In the expansion of \[{{\left( \frac{x}{2}-\frac{3}{{{x}^{2}}} \right)}^{10}}\], the coefficient of \[{{x}^{4}}\]is [IIT 1983; EAMCET 1985; DCE 2000; RPET 2001; UPSEAT 2002; J & K 2005] |
| A. | \[\frac{405}{256}\] |
| B. | \[\frac{504}{259}\] |
| C. | \[\frac{450}{263}\] |
| D. | None of these |
| Answer» B. \[\frac{504}{259}\] | |
| 4691. |
In the expansion of \[{{\left( x-\frac{1}{x} \right)}^{6}}\], the constant term is [AMU 1982; MP PET 1984; MNR 1979] |
| A. | -20 |
| B. | 20 |
| C. | 30 |
| D. | -30 |
| Answer» B. 20 | |
| 4692. |
If the ratio of the coefficient of third and fourth term in the expansion of \[{{\left( x-\frac{1}{2x} \right)}^{n}}\] is 1 : 2, then the value of n will be |
| A. | 18 |
| B. | 16 |
| C. | 12 |
| D. | -10 |
| Answer» E. | |
| 4693. |
If the expansion of \[{{\left( {{y}^{2}}+\frac{c}{y} \right)}^{5}}\], the coefficient of y will be [MNR 1983] |
| A. | \[20c\] |
| B. | \[10c\] |
| C. | \[10{{c}^{3}}\] |
| D. | \[20{{c}^{2}}\] |
| Answer» D. \[20{{c}^{2}}\] | |
| 4694. |
If A and B are the coefficients of \[{{x}^{n}}\] in the expansions of \[{{(1+x)}^{2n}}\] and \[{{(1+x)}^{2n-1}}\]respectively, then [MP PET 1999; Pb. CET 2004] |
| A. | \[A=B\] |
| B. | \[A=2B\] |
| C. | \[2A=B\] |
| D. | None of these |
| Answer» C. \[2A=B\] | |
| 4695. |
In the expansion of \[{{\left( \frac{a}{x}+bx \right)}^{12}}\],the coefficient of x-10 will be |
| A. | \[12{{a}^{11}}\] |
| B. | \[12{{b}^{11}}a\] |
| C. | \[12{{a}^{11}}b\] |
| D. | \[12{{a}^{11}}{{b}^{11}}\] |
| Answer» D. \[12{{a}^{11}}{{b}^{11}}\] | |
| 4696. |
If the coefficients of \[{{p}^{th}}\], \[{{(p+1)}^{th}}\] and \[{{(p+2)}^{th}}\]terms in the expansion of \[{{(1+x)}^{n}}\]are in A.P., then [AIEEE 2005] |
| A. | \[{{n}^{2}}-2np+4{{p}^{2}}=0\] |
| B. | \[{{n}^{2}}-n\,(4p+1)+4{{p}^{2}}-2=0\] |
| C. | \[{{n}^{2}}-n\,(4p+1)+4{{p}^{2}}=0\] |
| D. | None of these |
| Answer» C. \[{{n}^{2}}-n\,(4p+1)+4{{p}^{2}}=0\] | |
| 4697. |
If the coefficients of \[{{T}_{r}},\,{{T}_{r+1}},\,{{T}_{r+2}}\] terms of \[{{(1+x)}^{14}}\] are in A.P., then r = [Pb. CET 2002] |
| A. | 6 |
| B. | 7 |
| C. | 8 |
| D. | 9 |
| Answer» E. | |
| 4698. |
The first 3 terms in the expansion of \[{{(1+ax)}^{n}}\] \[(n\ne 0)\] are 1, 6x and 16x2. Then the value of a and n are respectively [Kerala (Engg.) 2002] |
| A. | 2 and 9 |
| B. | 3 and 2 |
| C. | 2/3 and 9 |
| D. | 3/2 and \[6\] |
| Answer» D. 3/2 and \[6\] | |
| 4699. |
If the third term in the binomial expansion of \[{{(1+x)}^{m}}\] is \[-\frac{1}{8}{{x}^{2}}\], then the rational value of m is |
| A. | 2 |
| B. | \[1/2\] |
| C. | 3 |
| D. | 4 |
| Answer» C. 3 | |
| 4700. |
\[{{6}^{th}}\]term in expansion of \[{{\left( 2{{x}^{2}}-\frac{1}{3{{x}^{2}}} \right)}^{10}}\] is |
| A. | \[\frac{4580}{17}\] |
| B. | \[-\frac{896}{27}\] |
| C. | \[\frac{5580}{17}\] |
| D. | None of these |
| Answer» C. \[\frac{5580}{17}\] | |