

MCQOPTIONS
Saved Bookmarks
This section includes 6 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing Questions and Answers knowledge and support exam preparation. Choose a topic below to get started.
1. |
In equation ℴ = \(\frac{2}{T}(\frac{r^2-1}{1+r^2+2rcosω})\), if r > 1 then ℴ > 0 and then mapping from s-plane to z-plane occurs in which of the following order? |
A. | LHP in s-plane maps into the inside of the unit circle in the z-plane |
B. | RHP in s-plane maps into the outside of the unit circle in the z-plane |
C. | All of the mentioned |
D. | None of the mentioned |
Answer» C. All of the mentioned | |
2. |
In equation ℴ = \(\frac{2}{T}(\frac{r^2-1}{1+r^2+2rcosω})\) if r < 1 then ℴ < 0 and then mapping from s-plane to z-plane occurs in which of the following order? |
A. | LHP in s-plane maps into the inside of the unit circle in the z-plane |
B. | RHP in s-plane maps into the outside of the unit circle in the z-plane |
C. | All of the mentioned |
D. | None of the mentioned |
Answer» B. RHP in s-plane maps into the outside of the unit circle in the z-plane | |
3. |
In Nth order differential equation, the characteristics of bilinear transformation, let z=rejw,s=o+jΩ Then for s = \(\frac{2}{T}(\frac{1-z^{-1}}{1+z^{-1}})\), the values of Ω, ℴ are |
A. | ℴ = \(\frac{2}{T}(\frac{r^2-1}{1+r^2+2rcosω})\), Ω = \(\frac{2}{T}(\frac{2rsinω}{1+r^2+2rcosω})\) |
B. | Ω = \(\frac{2}{T}(\frac{r^2-1}{1+r^2+2rcosω})\), ℴ = \(\frac{2}{T}(\frac{2rsinω}{1+r^2+2rcosω})\) |
C. | Ω=0, ℴ=0 |
D. | None |
Answer» B. Ω = \(\frac{2}{T}(\frac{r^2-1}{1+r^2+2rcosω})\), ℴ = \(\frac{2}{T}(\frac{2rsinω}{1+r^2+2rcosω})\) | |
4. |
The z-transform of below difference equation is? |
A. | \((1+\frac{aT}{2})Y(z)-(1-\frac{aT}{2})y(n-1)=\frac{bT}{2} [x(n)+ x(n-1)]\) |
B. | \((1+\frac{aT}{2})Y(z)-(1-\frac{aT}{2}) z^{-1} Y(z)=\frac{bT}{2} (1+z^{-1})X(z)\) |
C. | \((1+\frac{aT}{n})Y(z)-(1-\frac{aT}{2}) z^{-1} Y(z)=\frac{bT}{n} (1+z^{-1})X(z)\) |
D. | \((1+\frac{aT}{2})Y(z)+(1-\frac{aT}{n}) z^{-1} Y(z)=\frac{bT}{2} (1+z^{-1})X(z)\) |
E. | \((1+\frac{aT}{2})Y(z)-(1+\frac{aT}{2}) z^{-1} Y(z)=\frac{bT}{2} (1+z^{-1})X(z)\) |
Answer» B. \((1+\frac{aT}{2})Y(z)-(1-\frac{aT}{2}) z^{-1} Y(z)=\frac{bT}{2} (1+z^{-1})X(z)\) | |
5. |
We use y{‘}(nT)=-ay(nT)+bx(nT) to substitute for the derivative in y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (nT-T)]+y(nT-T)\) and thus obtain a difference equation for the equivalent discrete-time system. With y(n) = y(nT) and x(n) = x(nT), we obtain the result as of the following? |
A. | \((1+\frac{aT}{2})Y(z)-(1-\frac{aT}{2})y(n-1)=\frac{bT}{2} [x(n)+x(n-1)]\) |
B. | \((1+\frac{aT}{n})Y(z)-(1-\frac{aT}{n})y(n-1)=\frac{bT}{n} [x(n)+x(n-1)]\) |
C. | \((1+\frac{aT}{2})Y(z)+(1-\frac{aT}{2})y(n-1)=\frac{bT}{2} (x(n)-x(n-1))\) |
D. | \((1+\frac{aT}{2})Y(z)+(1-\frac{aT}{2})y(n-1)=\frac{bT}{2} (x(n)+x(n+1))\) |
Answer» B. \((1+\frac{aT}{n})Y(z)-(1-\frac{aT}{n})y(n-1)=\frac{bT}{n} [x(n)+x(n-1)]\) | |
6. |
The approximation of the integral in y(t) = \(\int_{t_0}^t y'(τ)dt+y(t_0)\) by the Trapezoidal formula at t = nT and t0=nT-T yields equation? |
A. | y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (T-nT)]+y(nT-T)\) |
B. | y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (nT-T)]+y(nT-T)\) |
C. | y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (T-nT)]+y(T-nT)\) |
D. | y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (nT-T)]+y(T-nT)\) |
Answer» C. y(nT) = \(\frac{T}{2} [y^{‘} (nT)+y^{‘} (T-nT)]+y(T-nT)\) | |