 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 11 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing knowledge and support exam preparation. Choose a topic below to get started.
| 1. | In equation = ( frac{2}{T}( frac{r^2-1}{1+r^2+2rcos }) ), if r > 1 then > 0 and then mapping from s-plane to z-plane occurs in which of the following order? | 
| A. | LHP in s-plane maps into the inside of the unit circle in the z-plane | 
| B. | RHP in s-plane maps into the outside of the unit circle in the z-plane | 
| C. | All of the mentioned | 
| D. | None of the mentioned | 
| Answer» C. All of the mentioned | |
| 2. | In equation = ( frac{2}{T}( frac{r^2-1}{1+r^2+2rcos }) ) if r < 1 then < 0 and then mapping from s-plane to z-plane occurs in which of the following order? | 
| A. | LHP in s-plane maps into the inside of the unit circle in the z-plane | 
| B. | RHP in s-plane maps into the outside of the unit circle in the z-plane | 
| C. | All of the mentioned | 
| D. | None of the mentioned | 
| Answer» B. RHP in s-plane maps into the outside of the unit circle in the z-plane | |
| 3. | In Nth order differential equation, the characteristics of bilinear transformation, let z=rejw,s=o+j Then for s = ( frac{2}{T}( frac{1-z^{-1}}{1+z^{-1}}) ), the values of , are | 
| A. | = ( frac{2}{T}( frac{r^2-1}{1+r^2+2rcos }) ), = ( frac{2}{T}( frac{2rsin }{1+r^2+2rcos }) ) | 
| B. | = ( frac{2}{T}( frac{r^2-1}{1+r^2+2rcos }) ), = ( frac{2}{T}( frac{2rsin }{1+r^2+2rcos }) ) | 
| C. | =0, =0 | 
| D. | None | 
| Answer» B. = ( frac{2}{T}( frac{r^2-1}{1+r^2+2rcos }) ), = ( frac{2}{T}( frac{2rsin }{1+r^2+2rcos }) ) | |
| 4. | In the Bilinear Transformation mapping, which of the following are correct? | 
| A. | All points in the LHP of s are mapped inside the unit circle in the z-plane | 
| B. | All points in the RHP of s are mapped outside the unit circle in the z-plane | 
| C. | All points in the LHP & RHP of s are mapped inside & outside the unit circle in the z-plane | 
| D. | None of the mentioned | 
| Answer» D. None of the mentioned | |
| 5. | What is the system function of the equivalent digital filter? H(z) = Y(z)/X(z) = ? | 
| A. | ( frac{( frac{bT}{2})(1+z^{-1})}{1+ frac{aT}{2}-(1- frac{aT}{2}) z^{-1}} ) | 
| B. | ( frac{( frac{bT}{2})(1-z^{-1})}{1+ frac{aT}{2}-(1+ frac{aT}{2}) z^{-1}} ) | 
| C. | ( frac{b}{ frac{2}{T}( frac{1-z^{-1}}{1+z^{-1}}+a)} ) | 
| D. | ( frac{( frac{bT}{2})(1-z^{-1})}{1+ frac{aT}{2}-(1+ frac{aT}{2}) z^{-1}} ) & ( frac{b}{ frac{2}{T}( frac{1-z^{-1}}{1+z^{-1}}+a)} ) | 
| Answer» E. | |
| 6. | The z-transform of below difference equation is? ((1+ frac{aT}{2})Y(z)-(1- frac{aT}{2})y(n-1)= frac{bT}{2} [x(n)+ x(n-1)] ) | 
| A. | ((1+ frac{aT}{2})Y(z)-(1- frac{aT}{2}) z^{-1} Y(z)= frac{bT}{2} (1+z^{-1})X(z) ) | 
| B. | ((1+ frac{aT}{n})Y(z)-(1- frac{aT}{2}) z^{-1} Y(z)= frac{bT}{n} (1+z^{-1})X(z) ) | 
| C. | ((1+ frac{aT}{2})Y(z)+(1- frac{aT}{n}) z^{-1} Y(z)= frac{bT}{2} (1+z^{-1})X(z) ) | 
| D. | ((1+ frac{aT}{2})Y(z)-(1+ frac{aT}{2}) z^{-1} Y(z)= frac{bT}{2} (1+z^{-1})X(z) ) | 
| Answer» B. ((1+ frac{aT}{n})Y(z)-(1- frac{aT}{2}) z^{-1} Y(z)= frac{bT}{n} (1+z^{-1})X(z) ) | |
| 7. | We use y{ }(nT)=-ay(nT)+bx(nT) to substitute for the derivative in y(nT) = ( frac{T}{2} [y^{ } (nT)+y^{ } (nT-T)]+y(nT-T) ) and thus obtain a difference equation for the equivalent discrete-time system. With y(n) = y(nT) and x(n) = x(nT), we obtain the result as of the following? | 
| A. | ((1+ frac{aT}{2})Y(z)-(1- frac{aT}{2})y(n-1)= frac{bT}{2} [x(n)+x(n-1)] ) | 
| B. | ((1+ frac{aT}{n})Y(z)-(1- frac{aT}{n})y(n-1)= frac{bT}{n} [x(n)+x(n-1)] ) | 
| C. | ((1+ frac{aT}{2})Y(z)+(1- frac{aT}{2})y(n-1)= frac{bT}{2} (x(n)-x(n-1)) ) | 
| D. | ((1+ frac{aT}{2})Y(z)+(1- frac{aT}{2})y(n-1)= frac{bT}{2} (x(n)+x(n+1)) ) | 
| Answer» B. ((1+ frac{aT}{n})Y(z)-(1- frac{aT}{n})y(n-1)= frac{bT}{n} [x(n)+x(n-1)] ) | |
| 8. | The approximation of the integral in y(t) = ( int_{t_0}^t y'( )dt+y(t_0) ) by the Trapezoidal formula at t = nT and t0=nT-T yields equation? | 
| A. | y(nT) = ( frac{T}{2} [y^{ } (nT)+y^{ } (T-nT)]+y(nT-T) ) | 
| B. | y(nT) = ( frac{T}{2} [y^{ } (nT)+y^{ } (nT-T)]+y(nT-T) ) | 
| C. | y(nT) = ( frac{T}{2} [y^{ } (nT)+y^{ } (T-nT)]+y(T-nT) ) | 
| D. | y(nT) = ( frac{T}{2} [y^{ } (nT)+y^{ } (nT-T)]+y(T-nT) ) | 
| Answer» C. y(nT) = ( frac{T}{2} [y^{ } (nT)+y^{ } (T-nT)]+y(T-nT) ) | |
| 9. | Is IIR Filter design by Bilinear Transformation is the advanced technique when compared to other design techniques? | 
| A. | True | 
| B. | False | 
| Answer» B. False | |
| 10. | In Bilinear Transformation, aliasing of frequency components is been avoided. | 
| A. | True | 
| B. | False | 
| Answer» B. False | |
| 11. | In IIR Filter design by the Bilinear Transformation, the Bilinear Transformation is a mapping from | 
| A. | Z-plane to S-plane | 
| B. | S-plane to Z-plane | 
| C. | S-plane to J-plane | 
| D. | J-plane to Z-plane | 
| Answer» C. S-plane to J-plane | |