 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 14 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing knowledge and support exam preparation. Choose a topic below to get started.
| 1. | What is the frequency response of the system described by the system function H(z)= ( frac{1}{1-0.8z^{-1}} )? | 
| A. | ( frac{e^{j }}{e^{j }-0.8} ) | 
| B. | ( frac{e^{j }}{e^{j }+0.8} ) | 
| C. | ( frac{e^{-j }}{e^{-j }-0.8} ) | 
| D. | None of the mentioned | 
| Answer» B. ( frac{e^{j }}{e^{j }+0.8} ) | |
| 2. | An LTI system is characterized by its impulse response h(n)=(1/2)nu(n). What is the spectrum of the output signal when the system is excited by the signal x(n)=(1/4)nu(n)? | 
| A. | ( frac{1}{(1- frac{1}{2} e^{-j })(1+ frac{1}{4} e^{-j })} ) | 
| B. | ( frac{1}{(1- frac{1}{2} e^{-j })(1- frac{1}{4} e^{-j })} ) | 
| C. | ( frac{1}{(1+ frac{1}{2} e^{-j })(1- frac{1}{4} e^{-j })} ) | 
| D. | ( frac{1}{(1+ frac{1}{2} e^{-j })(1+ frac{1}{4} e^{-j })} ) | 
| Answer» C. ( frac{1}{(1+ frac{1}{2} e^{-j })(1- frac{1}{4} e^{-j })} ) | |
| 3. | The output of the Linear time invariant system cannot contain the frequency components that are not contained in the input signal. | 
| A. | True | 
| B. | False | 
| Answer» B. False | |
| 4. | If an LTI system is described by the difference equation y(n)=ay(n-1)+bx(n), 0<a<1, then what is the output of the system when input x(n)= (5+12sin frac{ }{2}n-20cos( n+ frac{ }{4}) )?(Given a=0.9 and b=0.1) | 
| A. | (5+0.888sin( frac{ }{2}n-420)-1.06cos( n- frac{ }{4}) ) | 
| B. | (5+0.888sin( frac{ }{2}n-420)+1.06cos( n+ frac{ }{4}) ) | 
| C. | (5+0.888sin( frac{ }{2}n-420)-1.06cos( n+ frac{ }{4}) ) | 
| D. | (5+0.888sin( frac{ }{2}n+420)-1.06cos( n+ frac{ }{4}) ) | 
| Answer» D. (5+0.888sin( frac{ }{2}n+420)-1.06cos( n+ frac{ }{4}) ) | |
| 5. | If an LTI system is described by the difference equation y(n)=ay(n-1)+bx(n), 0 < a < 1, then what is the parameter b so that the maximum value of |H( )| is unity? | 
| A. | a | 
| B. | 1-a | 
| C. | 1+a | 
| D. | none of the mentioned | 
| Answer» C. 1+a | |
| 6. | What is the magnitude of the frequency response of the system described by the difference equation y(n)=ay(n-1)+bx(n), 0<a<1? | 
| A. | ( frac{|b|}{ sqrt{1+2acos +a^2}} ) | 
| B. | ( frac{|b|}{1-2acos +a^2} ) | 
| C. | ( frac{|b|}{1+2acos +a^2} ) | 
| D. | ( frac{|b|}{ sqrt{1-2acos +a^2}} ) | 
| Answer» E. | |
| 7. | What is the response of the system with impulse response h(n)=(1/2)nu(n) and the input signal x(n)=10-5sin n/2+20cos n? | 
| A. | 20- ( frac{10}{ sqrt{5}} sin( /2n-26.60)+ frac{40}{3}cos n ) | 
| B. | 20- ( frac{10}{ sqrt{5}} sin( /2n-26.60)+ 40cos n ) | 
| C. | 20- ( frac{10}{ sqrt{5}} sin( /2n+26.60)+ frac{40}{3cos n} ) | 
| D. | None of the mentioned | 
| Answer» B. 20- ( frac{10}{ sqrt{5}} sin( /2n-26.60)+ 40cos n ) | |
| 8. | What is the magnitude of H( ) for the three point moving average system whose output is given by y(n)= ( frac{1}{3}[x(n+1)+x(n)+x(n-1)] )? | 
| A. | ( frac{1}{3}|1-2cos | ) | 
| B. | ( frac{1}{3}|1+2cos | ) | 
| C. | |1-2cos | | 
| D. | |1+2cos | | 
| Answer» C. |1-2cos | | |
| 9. | If h(n) is the real valued impulse response sequence of an LTI system, then what is the phase of H( ) in terms of HR( ) and HI( )? | 
| A. | (tan^{-1} frac{H_R ( )}{H_I ( )} ) | 
| B. | (tan^{-1} frac{H_R ( )}{H_I ( )} ) | 
| C. | (tan^{-1} frac{H_I ( )}{H_R ( )} ) | 
| D. | (tan^{-1} frac{H_I ( )}{H_R ( )} ) | 
| Answer» D. (tan^{-1} frac{H_I ( )}{H_R ( )} ) | |
| 10. | If h(n) is the real valued impulse response sequence of an LTI system, then what is the imaginary part of Fourier transform of the impulse response? | 
| A. | ( sum_{k=- }^ h(k) sin u2061 k ) | 
| B. | ( sum_{k=- }^ h(k) sin u2061 k ) | 
| C. | ( sum_{k=- }^ h(k) cos u2061 k ) | 
| D. | ( sum_{k=- }^ h(k) cos u2061 k ) | 
| Answer» B. ( sum_{k=- }^ h(k) sin u2061 k ) | |
| 11. | If the Eigen function of an LTI system is x(n)= Aejn and the impulse response of the system is h(n)=(1/2)nu(n), then what is the Eigen value of the system? | 
| A. | 3/2 | 
| B. | -3/2 | 
| C. | -2/3 | 
| D. | 2/3 | 
| Answer» E. | |
| 12. | What is the output sequence of the system with impulse response h(n)=(1/2)nu(n) when the input of the system is the complex exponential sequence x(n)=Aejn /2? | 
| A. | (Ae^{j( frac{n }{2}-26.6 )} ) | 
| B. | ( frac{2}{ sqrt{5}} Ae^{j( frac{n }{2}-26.6 )} ) | 
| C. | ( frac{2}{ sqrt{5}} Ae^{j({n }{2}+26.6 )} ) | 
| D. | (Ae^{j( frac{n }{2}+26.6 )} ) | 
| Answer» C. ( frac{2}{ sqrt{5}} Ae^{j({n }{2}+26.6 )} ) | |
| 13. | If the system gives an output y(n)=H( )x(n) with x(n) = Aej nas input signal, then x(n) is said to be Eigen function of the system. | 
| A. | True | 
| B. | False | 
| Answer» B. False | |
| 14. | If x(n)=Aej n is the input of an LTI system and h(n) is the response of the system, then what is the output y(n) of the system? | 
| A. | H(- )x(n) | 
| B. | -H( )x(n) | 
| C. | H( )x(n) | 
| D. | None of the mentioned | 
| Answer» D. None of the mentioned | |