MCQOPTIONS
Saved Bookmarks
This section includes 19 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
What is the frequency response of the system described by the system function H(z)=\(\frac{1}{1-0.8z^{-1}}\)? |
| A. | \(\frac{e^{jω}}{e^{jω}-0.8}\) |
| B. | \(\frac{e^{jω}}{e^{jω}+0.8}\) |
| C. | \(\frac{e^{-jω}}{e^{-jω}-0.8}\) |
| D. | None of the mentioned |
| Answer» B. \(\frac{e^{jω}}{e^{jω}+0.8}\) | |
| 2. |
An LTI system is characterized by its impulse response h(n)=(1/2)nu(n). What is the spectrum of the output signal when the system is excited by the signal x(n)=(1/4)nu(n)? |
| A. | \(\frac{1}{(1-\frac{1}{2} e^{-jω})(1+\frac{1}{4} e^{-jω})}\) |
| B. | \(\frac{1}{(1-\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\) |
| C. | \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\) |
| D. | \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1+\frac{1}{4} e^{-jω})}\) |
| Answer» C. \(\frac{1}{(1+\frac{1}{2} e^{-jω})(1-\frac{1}{4} e^{-jω})}\) | |
| 3. |
The output of the Linear time invariant system cannot contain the frequency components that are not contained in the input signal. |
| A. | True |
| B. | False |
| Answer» B. False | |
| 4. |
If an LTI system is described by the difference equation y(n)=ay(n-1)+bx(n), 0 |
| A. | \(5+0.888sin(\frac{π}{2}n-420)-1.06cos(πn-\frac{π}{4})\) |
| B. | \(5+0.888sin(\frac{π}{2}n-420)+1.06cos(πn+\frac{π}{4})\) |
| C. | \(5+0.888sin(\frac{π}{2}n-420)-1.06cos(πn+\frac{π}{4})\) |
| D. | \(5+0.888sin(\frac{π}{2}n+420)-1.06cos(πn+\frac{π}{4})\) |
| Answer» D. \(5+0.888sin(\frac{π}{2}n+420)-1.06cos(πn+\frac{π}{4})\) | |
| 5. |
If an LTI system is described by the difference equation y(n)=ay(n-1)+bx(n), 0 < a < 1, then what is the parameter ‘b’ so that the maximum value of |H(ω)| is unity? |
| A. | a |
| B. | 1-a |
| C. | 1+a |
| D. | none of the mentioned |
| Answer» C. 1+a | |
| 6. |
What is the magnitude of the frequency response of the system described by the difference equation y(n)=ay(n-1)+bx(n), 0 |
| A. | \(\frac{|b|}{\sqrt{1+2acosω+a^2}}\) |
| B. | \(\frac{|b|}{1-2acosω+a^2}\) |
| C. | \(\frac{|b|}{1+2acosω+a^2}\) |
| D. | \(\frac{|b|}{\sqrt{1-2acosω+a^2}}\) |
| Answer» E. | |
| 7. |
What is the response of the system with impulse response h(n)=(1/2)nu(n) and the input signal x(n)=10-5sinπn/2+20cosπn? |
| A. | 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ \frac{40}{3}cosπn\) |
| B. | 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ 40cosπn\) |
| C. | 20-\(\frac{10}{\sqrt{5}} sin(π/2n+26.60)+ \frac{40}{3cosπn}\) |
| D. | None of the mentioned |
| Answer» B. 20-\(\frac{10}{\sqrt{5}} sin(π/2n-26.60)+ 40cosπn\) | |
| 8. |
What is the magnitude of H(ω) for the three point moving average system whose output is given by y(n)=\(\frac{1}{3}[x(n+1)+x(n)+x(n-1)]\)? |
| A. | \(\frac{1}{3}|1-2cosω|\) |
| B. | \(\frac{1}{3}|1+2cosω|\) |
| C. | |1-2cosω| |
| D. | |1+2cosω| |
| Answer» C. |1-2cosω| | |
| 9. |
If h(n) is the real valued impulse response sequence of an LTI system, then what is the phase of H(ω) in terms of HR(ω) and HI(ω)? |
| A. | \(tan^{-1}\frac{H_R (ω)}{H_I (ω)}\) |
| B. | –\(tan^{-1}\frac{H_R (ω)}{H_I (ω)}\) |
| C. | \(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\) |
| D. | –\(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\) |
| Answer» D. –\(tan^{-1}\frac{H_I (ω)}{H_R (ω)}\) | |
| 10. |
If h(n) is the real valued impulse response sequence of an LTI system, then what is the imaginary part of Fourier transform of the impulse response? |
| A. | –\(\sum_{k=-∞}^∞ h(k) sinωk\) |
| B. | \(\sum_{k=-∞}^∞ h(k) sinωk\) |
| C. | –\(\sum_{k=-∞}^∞ h(k) cosωk\) |
| D. | \(\sum_{k=-∞}^∞ h(k) cosωk\) |
| Answer» B. \(\sum_{k=-∞}^∞ h(k) sinωk\) | |
| 11. |
If the Eigen function of an LTI system is x(n)= Aejnπ and the impulse response of the system is h(n)=(1/2)nu(n), then what is the Eigen value of the system? |
| A. | 3/2 |
| B. | -3/2 |
| C. | -2/3 |
| D. | 2/3 |
| Answer» E. | |
| 12. |
What is the output sequence of the system with impulse response h(n)=(1/2)nu(n) when the input of the system is the complex exponential sequence x(n)=Aejnπ/2? |
| A. | \(Ae^{j(\frac{nπ}{2}-26.6°)}\) |
| B. | \(\frac{2}{\sqrt{5}} Ae^{j(\frac{nπ}{2}-26.6°)}\) |
| C. | \(\frac{2}{\sqrt{5}} Ae^{j({nπ}{2}+26.6°)}\) |
| D. | \(Ae^{j(\frac{nπ}{2}+26.6°)}\) |
| Answer» C. \(\frac{2}{\sqrt{5}} Ae^{j({nπ}{2}+26.6°)}\) | |
| 13. |
If the system gives an output y(n)=H(ω)x(n) with x(n) = Aejωnas input signal, then x(n) is said to be Eigen function of the system. |
| A. | True |
| B. | False |
| Answer» B. False | |
| 14. |
If x(n)=Aejωn is the input of an LTI system and h(n) is the response of the system, then what is the output y(n) of the system? |
| A. | H(-ω)x(n) |
| B. | -H(ω)x(n) |
| C. | H(ω)x(n) |
| D. | None of the mentioned |
| Answer» D. None of the mentioned | |
| 15. |
IF_AN_LTI_SYSTEM_IS_DESCRIBED_BY_THE_DIFFERENCE_EQUATION_Y(N)=AY(N-1)+BX(N),_0_ |
| A. | a |
| B. | 1-a |
| C. | 1+a |
| D. | None of the mentioned |
| Answer» C. 1+a | |
| 16. |
What is the magnitude of H(ω) for the three point moving average system whose output is given by y(n)=1/3[x(n+1)+x(n)+x(n-1)]?$ |
| A. | 1/[3|1-2cosω|]. |
| B. | 1/[3|1+2cosω|]. |
| C. | |1-2cosω|. |
| D. | |1+2cosω|. |
| Answer» C. |1-2cos‚âà√¨‚àö¬¢|. | |
| 17. |
If the Eigen function of an LTI system is x(n)= Aejnπ and the impulse response of the system is h(n)=(1/2)nu(n), then what is the Eigen value of the system?$ |
| A. | 3/2 |
| B. | -3/2 |
| C. | -2/3 |
| D. | 2/3 |
| Answer» E. | |
| 18. |
If the system gives an output y(n)=H(ω)x(n) with x(n)= Aejωnas input signal, then x(n) is said to be Eigen function of the system.$ |
| A. | True |
| B. | False |
| Answer» B. False | |
| 19. |
If x(n)=Aejωn is the input of an LTI system and h(n) is the response of the system, then what is the output y(n) of the system? |
| A. | H(-ω)x(n) |
| B. | -H(ω)x(n) |
| C. | H(ω)x(n) |
| D. | None of the mentioned |
| Answer» D. None of the mentioned | |