MCQOPTIONS
Saved Bookmarks
This section includes 180 Mcqs, each offering curated multiple-choice questions to sharpen your Geotechnical Engineering knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
The vertical stress distribution diagram on a horizontal plane due to a concentrated load is known as the influence diagram if the load is ______ |
| A. | zero |
| B. | unity |
| C. | two units |
| D. | three units |
| Answer» C. two units | |
| 102. |
In one-dimensional consolidation, secondary consolidation is __________ |
| A. | considered at the start of test |
| B. | considered at the middle of test |
| C. | considered at the end of test |
| D. | disregarded |
| Answer» E. | |
| 103. |
The component τₓᵧ denotes ___________ |
| A. | normal stress in x-direction |
| B. | normal stress perpendicular to y-axis |
| C. | shear stress acting perpendicular to x-axis |
| D. | shear stress acting perpendicular to y-axis |
| Answer» D. shear stress acting perpendicular to y-axis | |
| 104. |
In the generalised Hook’s law equation, εₓ=C₁₁σₓ+ C₁₂ (σᵧ+σz), the constant C₁₂ is __________ |
| A. | E |
| B. | 1/E |
| C. | –μ/E |
| D. | μ |
| Answer» D. μ | |
| 105. |
The Boussinesq influence factor is given by ____________ |
| A. | \(K_B=\frac{3Q}{2πz} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{5/2}\) |
| B. | \(K_B=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\) |
| C. | \(K_B=\frac{3}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\) |
| D. | \(K_B=\frac{3}{2πz} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\) |
| Answer» D. \(K_B=\frac{3}{2πz} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\) | |
| 106. |
In Terzaghi’s Theory of one dimensional consolidation, the time lag in consolidation is ___________ |
| A. | due to permeability of soil and viscosity of water or fluid |
| B. | due entirely to seepage pressure of water |
| C. | due entirely to permeability of soil |
| D. | due entirely to viscosity of water or fluid |
| Answer» D. due entirely to viscosity of water or fluid | |
| 107. |
The Boussinesq equation representing the vertical stress is ___________ |
| A. | \(σ_z=\frac{3}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^{5/2}\) |
| B. | \(σ_z=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^5\) |
| C. | \(σ_z=\frac{3Q}{2πz^2}\left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\) |
| D. | \(σ_z=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^2\) |
| Answer» D. \(σ_z=\frac{3Q}{2π} \left[\frac{1}{1+(\frac{r}{z})^2} \right]^2\) | |
| 108. |
The Newmark’s influence chart consists of _________ |
| A. | a single circle only |
| B. | a number of circles and radiating lines |
| C. | bar diagram |
| D. | small rectangular unit areas |
| Answer» C. bar diagram | |
| 109. |
Body forces are _________ |
| A. | external forces at boundaries of body |
| B. | internal forces at boundaries of body |
| C. | forces only on one side in internal of the body |
| D. | forces distributed throughout the volume of the body |
| Answer» E. | |
| 110. |
The range of Poisson’s ratio μ for loess is _________ |
| A. | 0.1-0.3 |
| B. | 0.4-0.5 |
| C. | 0.3-0.35 |
| D. | 0.9-1 |
| Answer» B. 0.4-0.5 | |
| 111. |
The modulus of elasticity in MPa for very soft clay is __________ |
| A. | 2-15 |
| B. | 15-60 |
| C. | 50-81 |
| D. | 100-200 |
| Answer» B. 15-60 | |
| 112. |
___________ is an example of surface force. |
| A. | inertia force |
| B. | gravitational force |
| C. | magnetic force |
| D. | hydrostatic force |
| Answer» E. | |
| 113. |
The Westergaard’s influence factor is given by _____________ |
| A. | \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \) |
| B. | \(K_W=\frac{Q}{z^2} \) |
| C. | \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{5}{2}} \frac{Q}{z^2} \) |
| D. | \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^3}\frac{Q}{z^2} \) |
| Answer» B. \(K_W=\frac{Q}{z^2} \) | |
| 114. |
The compatibility equation in terms of plane stress case is given by ________ |
| A. | \((\frac{∂^2}{∂x^2} +\frac{∂^2}{∂z^2})=0\) |
| B. | \((\frac{∂^2}{∂y^2} +\frac{∂^2}{∂z^2})(σ_y+σ_z )=0\) |
| C. | \((\frac{∂^2}{∂x^2} +\frac{∂^2}{∂y^2})(σ_x+σ_y )=0\) |
| D. | \((\frac{∂^2}{∂x^2} +\frac{∂^2}{∂z^2})(σ_x+σ_z )=0\) |
| Answer» E. | |
| 115. |
The number of independent elastic constant is ______ |
| A. | 2 |
| B. | 5 |
| C. | 0 |
| D. | 6 |
| Answer» B. 5 | |
| 116. |
For both plane stress as well as plain strain case the equilibrium equation in z-direction is _______ |
| A. | \(\frac{∂τ_{xz}}{∂x}+\frac{∂σ_z}{∂z}+γ=0\) |
| B. | \(\frac{∂σ_x}{∂x}+\frac{∂τ_{zx}}{∂z}+γ=1\) |
| C. | \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y}+γ=0\) |
| D. | \(\frac{∂σ_x}{∂x}+\frac{∂τ_{zx}}{∂z}=0\) |
| Answer» B. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{zx}}{∂z}+γ=1\) | |
| 117. |
An isobar is a curve connecting all points of _______ below the ground. |
| A. | equal vertical pressure |
| B. | unequal vertical pressure |
| C. | equal horizontal pressure |
| D. | unequal horizontal pressure |
| Answer» B. unequal vertical pressure | |
| 118. |
When the maximum vertical stress \((σ_z)_{max}=\frac{0.0888Q}{r^2}\) at a point, the shear stress at that point is ____________ |
| A. | \(τ_{rz}=\frac{0.0888Q}{r^2} \) |
| B. | \(τ_{rz}=\frac{0.0725Q}{r^2} \) |
| C. | \(τ_{rz}=\frac{0.234Q}{r^2} \) |
| D. | \(τ_{rz}=\frac{0.328Q}{r^2} \) |
| Answer» C. \(τ_{rz}=\frac{0.234Q}{r^2} \) | |
| 119. |
The problem of elasticity is _________ |
| A. | strictly determinate |
| B. | strictly indeterminate |
| C. | in some cases indeterminate |
| D. | cannot be classified as determinate or indeterminate |
| Answer» C. in some cases indeterminate | |
| 120. |
In simple radial distribution, the three stress components σr, σθ and τrθ are given by ___________ |
| A. | \(σ_r=K \frac{Q cosθ}{r}, σ_θ=0 \,and\, τ_{rθ}=0 \) |
| B. | σr=KQ, σθ=0 and τrθ=0 |
| C. | \(σ_r=\frac{Q cosθ}{r}, σ_θ=0 \,and\, τ_{rθ}=0\) |
| D. | σr=0, σθ=0 and τrθ= 0 |
| Answer» B. σr=KQ, σθ=0 and τrθ=0 | |
| 121. |
If the r/z ratio is unity, then the vertical pressure on a horizontal plane is given by _________ |
| A. | \(σ_z=\frac{0.56Q}{z^3} \) |
| B. | \(σ_z=\frac{0.0844Q}{z^2} \) |
| C. | \(σ_z=\frac{0.2733Q}{z^2} \) |
| D. | \(σ_z=\frac{0.4775Q}{z^2} \) |
| Answer» C. \(σ_z=\frac{0.2733Q}{z^2} \) | |
| 122. |
The equilibrium equation obtained by summing all forces on z-direction is ________ |
| A. | \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\) |
| B. | \(\frac{∂τ_{xy}}{∂x} + \frac{∂σ_y}{∂y} +\frac{∂τ_{zy}}{∂z}+Y=0\) |
| C. | \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\) |
| D. | \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\) |
| Answer» D. \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\) | |
| 123. |
The compatibility equations are results of application of stress equations. |
| A. | True |
| B. | False |
| C. | May be True or False |
| D. | Can't say |
| Answer» C. May be True or False | |
| 124. |
The rate of change of velocity along the depth of layer is ___________ |
| A. | \(\frac{∂v}{∂z}=\frac{1}{γ_w}\frac{∂^2 \overline{u}}{∂z^2}\) |
| B. | \(\frac{∂v}{∂z}=\frac{k}{γ_w}\frac{\overline{u}}{∂z^2} \) |
| C. | \(\frac{∂v}{∂z}=\frac{∂^2\overline{u}}{∂z^2}\) |
| D. | \(\frac{∂v}{∂z}=\frac{k}{γ_w}\frac{∂^2 \overline{u}}{∂z^2}\) |
| Answer» E. | |
| 125. |
What will be the intensity of vertical stress at a depth of 4m directly below the concentrated load of 20 kN? |
| A. | 0.4356 kN/m² |
| B. | 0.244 kN/m² |
| C. | 0.652 kN/m² |
| D. | 0.597 kN/m² |
| Answer» E. | |
| 126. |
The strain tensor is given by ____________ |
| A. | \begin{pmatrix} 1/2Γ_{xz} & 1/2Γ_{xy} & ε_{xx} \\ 1/2Γ_{yx} & 1/2Γ_{yz} & ε_{yy} \\ 1/2Γ_{zx} & 1/2Γ_{zy} & ε_{zz} \end{pmatrix} |
| B. | \begin{pmatrix} 1/2Γ_{xy} & ε_{xx} & 1/2Γ_{xz} \\ 1/2Γ_{yx} & ε_{yy} & 1/2Γ_{yz} \\ 1/2Γ_{zy} & ε_{zz} & 1/2Γ_{zz} \end{pmatrix} |
| C. | \begin{pmatrix} ε_{xx} & 1/2Γ_{xy} & 1/2Γ_{xz} \\ 1/2Γ_{yx} & ε_{yy} & 1/2Γ_{yz} \\ 1/2Γ_{zx} & 1/2Γ_{zy} & ε_{zz} \end{pmatrix} |
| D. | \begin{pmatrix} ε_{xx} & 1/2Γ_{xy} & 1/2Γ_{xz} \\ ε_{yy} & 1/2Γ_{yx} & 1/2Γ_{yz} \\ ε_{zz} & 1/2Γ_{zy} & 1/2Γ_{zx} \end{pmatrix} |
| Answer» D. \begin{pmatrix} ε_{xx} & 1/2Γ_{xy} & 1/2Γ_{xz} \\ ε_{yy} & 1/2Γ_{yx} & 1/2Γ_{yz} \\ ε_{zz} & 1/2Γ_{zy} & 1/2Γ_{zx} \end{pmatrix} | |
| 127. |
For a linearly variable infinite load, for a point P, the vertical stress σz is _________ |
| A. | \(σ_z=\frac{q}{aπ} \left[xα+z\right] \) |
| B. | \(σ_z=\frac{q}{aπ} \) |
| C. | \(σ_z=\frac{q}{π}\left[\frac{az}{a^2+z^2}\right] \) |
| D. | \(σ_z=\left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \) |
| Answer» B. \(σ_z=\frac{q}{aπ} \) | |
| 128. |
For a symmetrically distributed triangular load, the shear stress τxz at any point at a depth z is given by ___________ |
| A. | \(τ_{xz}=-\frac{qz}{aπ} \left[α_1-α_2 \right] \) |
| B. | \(τ_{xz}=-\frac{q}{π} \left[α_1+α_2 \right]\) |
| C. | \(τ_{xz}=-\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\) |
| D. | \(τ_{xz}=-\frac{q}{π} \left[α_1-α_2 \right] \) |
| Answer» B. \(τ_{xz}=-\frac{q}{π} \left[α_1+α_2 \right]\) | |
| 129. |
If z-axis is considered to be directed downward from ground surface, then the stress component in y-axis at a point at a depth z due to self weight of soil above it is ___________ |
| A. | \(σ_y=\frac{1}{1-μ}γz\) |
| B. | σy=μγz |
| C. | \(σ_y=\frac{μ}{1-μ}\) |
| D. | \(σ_y=\frac{μ}{1-μ}γz \) |
| Answer» E. | |
| 130. |
An isobar diagram consists of __________ |
| A. | family of isobars of various intensities |
| B. | single isobar only |
| C. | two isobars only |
| D. | isobars of same intensities |
| Answer» B. single isobar only | |
| 131. |
The vertical stress is proportional to __________ |
| A. | \(\frac{z^2}{K_B} \) |
| B. | \(\frac{K_B}{z^2} \) |
| C. | \(\frac{K_B}{z^3} \) |
| D. | \(\frac{z^3}{K_B} \) |
| Answer» C. \(\frac{K_B}{z^3} \) | |
| 132. |
The zone of soil in isobar is called __________ |
| A. | stress diagram |
| B. | contour |
| C. | pressure bulb |
| D. | isotherm |
| Answer» D. isotherm | |
| 133. |
The rate of change of pore water pressure along the depth of layer represents ____________ |
| A. | seepage pressure |
| B. | seepage stress |
| C. | hydraulic gradient |
| D. | permeability of the soil |
| Answer» D. permeability of the soil | |
| 134. |
The equilibrium equations in terms of total stresses formed by summing all forces on x-direction is ________ |
| A. | \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\) |
| B. | \(\frac{∂τ_{xy}}{∂x} + \frac{∂σ_y}{∂y} +\frac{∂τ_{zy}}{∂z}+Y=0\) |
| C. | \(\frac{∂τ_{xz}}{∂x} +\frac{∂τ_{yz}}{∂y} +\frac{∂σ_z}{∂z} +Z=0\) |
| D. | \(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y} +\frac{∂τ_{zx}}{∂z} = 0\) |
| Answer» E. | |
| 135. |
Contact pressure can be called scratch hardness only in case of __________ |
| A. | elastic contact |
| B. | semi-elastic contact |
| C. | plastic contact |
| D. | semi-plastic contact |
| Answer» D. semi-plastic contact | |
| 136. |
Contact pressure is between __________ |
| A. | base of footing and underlying soil mass |
| B. | wall and column |
| C. | slab and wall |
| D. | wall and beam |
| Answer» B. wall and column | |
| 137. |
The compatibility equation in terms of stress components in polar coordinates are given by ____________ |
| A. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=0\) |
| B. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_θ )=0\) |
| C. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r )=0\) |
| D. | \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=1\) |
| Answer» B. \((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_θ )=0\) | |
| 138. |
Find the influence factor for the vertical pressure at depth 5m for a uniformly loaded circular area of 80 kN/m² load and radius of 1m. |
| A. | 0.6212 |
| B. | 0.0571 |
| C. | 0.0328 |
| D. | 0.0624 |
| Answer» C. 0.0328 | |
| 139. |
When there is no eternal loading, the principal is _______ |
| A. | 5m below ground plane |
| B. | ground plane |
| C. | 10m below ground plane |
| D. | at infinity |
| Answer» C. 10m below ground plane | |
| 140. |
When the ground is horizontal, \(α=\frac{π}{2}\) in constant K. What will be the radial stress σᵣ due to inclined line load at the horizontal ground surface? |
| A. | \(σ_r=\frac{Q cosθ}{r}\) |
| B. | \(σ_r=\frac{2Q cos(θ-β)}{πr}\) |
| C. | \(σ_r=\frac{Q sinθ}{r}\) |
| D. | \(σ_r=\frac{2Q sinθ}{r}\) |
| Answer» C. \(σ_r=\frac{Q sinθ}{r}\) | |
| 141. |
The total independent stresses at a point are _________ |
| A. | 3 |
| B. | 6 |
| C. | 9 |
| D. | 12 |
| Answer» C. 9 | |
| 142. |
The equilibrium equation in X-direction in terms of effected stress for a saturated soil body is given by __________ |
| A. | \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}=0\) |
| B. | \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y{‘}}{∂y}+\frac{∂τ_{zy}}{∂z}+γ_w \frac{∂h}{∂x}=0\) |
| C. | \(\frac{∂τ_{xz}}{∂x}+\frac{∂τ_{yz}}{∂y}+\frac{∂σ_z{‘}}{∂z}+γ_w \frac{∂h}{∂x}=0\) |
| D. | \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}+γ_w \frac{∂h}{∂x}=0\) |
| Answer» E. | |
| 143. |
For point P under the support A, the vertical stress is given by __________ |
| A. | \(σ_z=\frac{q}{aπ} [xα(x-α)] \) |
| B. | \(σ_z=\frac{q}{aπ} \) |
| C. | \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right] \) |
| D. | \(σ_z=\left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \) |
| Answer» D. \(σ_z=\left[xα-\frac{az}{(x-α)^2+z^2}(x-α)\right] \) | |
| 144. |
If a UDL of 70 kN/m² is acting at a rectangular area of 25 m², then the contact pressure is _______ |
| A. | 51kN/m² |
| B. | 54 kN/m² |
| C. | 80 kN/m² |
| D. | 70 kN/m² |
| Answer» E. | |
| 145. |
The stress component in x-direction on a horizontal plane in Cartesian coordinates for horizontal line load is ___________ |
| A. | \(σ_x=\frac{2Q}{xzsinθcosθ} \) |
| B. | \(σ_x=\frac{2Qxz^2}{π(x^2+z^2)^2} \) |
| C. | \(σ_x=\frac{2Qx^3}{π(x^2+z^2)^2} \) |
| D. | \(σ_x=\frac{2Qx^2 z}{π(x^2+z^2)^2} \) |
| Answer» D. \(σ_x=\frac{2Qx^2 z}{π(x^2+z^2)^2} \) | |
| 146. |
For a symmetrically distributed triangular load, under the centre of the triangular load, the vertical stress at any point at a depth z is given by ___________ |
| A. | \(σ_z=\frac{q}{aπ} \left[α_1+α_2 \right] \) |
| B. | \(σ_z=\frac{q}{π} \left[α_1+α_2 \right]\) |
| C. | \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\) |
| D. | \(σ_z=\frac{q}{π} \left[α_1-α_2 \right]\) |
| Answer» C. \(σ_z=\frac{q}{π} \left[\frac{az}{a^2+z^2}\right]\) | |
| 147. |
If w is the displacement in z-direction, the linear strain component in is defined by __________ |
| A. | \(ε_Z=\frac{∂w}{∂z}\) |
| B. | \(ε_Z=\frac{∂z}{∂w}\) |
| C. | \(ε_Z=\frac{dz}{dw}\) |
| D. | εz=z+w |
| Answer» B. \(ε_Z=\frac{∂z}{∂w}\) | |
| 148. |
The shear stress τxz in terms of stress function is given by __________ |
| A. | \(\frac{∂Φ}{∂z}-γx\) |
| B. | \(-\frac{∂^2Φ}{∂x∂z}-γx\) |
| C. | \(\frac{∂^2Φ}{∂x^2} -γx\) |
| D. | \(\frac{∂Φ}{∂x}-γx\) |
| Answer» C. \(\frac{∂^2Φ}{∂x^2} -γx\) | |
| 149. |
When the ground is horizontal, \(α=\frac{π}{2}\) in constant K. What will be the radial stress σᵣ due to vertical line load? |
| A. | \(σ_r=\frac{Q cosθ}{r}\) |
| B. | \(σ_r=\frac{2Q cosθ}{πr}\) |
| C. | \(σ_r=\frac{Q sinθ}{r}\) |
| D. | \(σ_r=\frac{2Q sinθ}{r}\) |
| Answer» C. \(σ_r=\frac{Q sinθ}{r}\) | |
| 150. |
The vertical stress under the corner of a uniformly loaded rectangular area of size a, b at depth z and m=a/z, n=b/z is given by ___________ |
| A. | \(σ_z=\frac{2q’}{πz}\frac{1}{\left[1+(\frac{x}{z})^2\right]^2}\) |
| B. | \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}\right] \) |
| C. | \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \) |
| D. | \(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) |
| Answer» D. \(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) | |