

MCQOPTIONS
Saved Bookmarks
This section includes 13 Mcqs, each offering curated multiple-choice questions to sharpen your Soil Mechanics knowledge and support exam preparation. Choose a topic below to get started.
1. |
The time factor Tv for the vertical flow is given by _______ |
A. | \(T_v=\frac{C_{vz} t}{H^2} \) |
B. | \(T_v=\frac{-C_{rz} t}{H^2} \) |
C. | \(T_v=\frac{C_{vz}}{H^2} \) |
D. | \(T_v=\frac{C_{vz} t}{H}\) |
Answer» B. \(T_v=\frac{-C_{rz} t}{H^2} \) | |
2. |
The equation given by Carillo in 1942 relating the degree of consolidation in one dimensional flow (Uz) and radial flow (Ur) is _______ |
A. | (1-U)=(1-Uz)(1+Ur) |
B. | (1-U)=(1-Uz)(1-Ur) |
C. | (1-U)=(1+Uz)(1-Ur) |
D. | (1-U)=(1+Uz)(1+Ur) |
Answer» C. (1-U)=(1+Uz)(1-Ur) | |
3. |
The one dimensional flow part of governing consolidation equation of three dimensional consolidation having radial symmetry is _______ |
A. | \(\frac{∂\overline{u}}{∂t}=C_{vr} \frac{∂\overline{u}}{∂r^2}\) |
B. | \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\) |
C. | \(\frac{∂\overline{u}}{∂t}=C_{vz} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\) |
D. | \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})\) |
Answer» B. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\) | |
4. |
The radial flow part of governing consolidation equation of three dimensional consolidation having radial symmetry is _______ |
A. | \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})\) |
B. | \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\) |
C. | \(\frac{∂\overline{u}}{∂t}=C_{vz} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\) |
D. | \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})\) |
Answer» B. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\) | |
5. |
In case of radial symmetry, \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}\) is_________ |
A. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}\) |
B. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}\) |
C. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=-\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}\) |
D. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=-\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}\) |
Answer» B. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}\) | |
6. |
The term \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}\) in terms of r and θ is given by _______ |
A. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}-\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\) |
B. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}+\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\) |
C. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}-\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\) |
D. | \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}+\frac{1}{c^2}\frac{∂^2 \overline{u}}{∂θ^2}\) |
Answer» C. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}-\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\) | |
7. |
The partial differentiation of excess hydrostatic pressure \overline{u} as a function of r and θ with respect to x is given by _______ |
A. | \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r}\frac{∂\overline{u}}{∂θ} sinθ\) |
B. | \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} cosθ\) |
C. | \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} sinθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} sinθ\) |
D. | \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} sinθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} cosθ\) |
Answer» B. \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} cosθ\) | |
8. |
In polar form the term, \(\frac{∂θ}{∂y}\) is given by______ |
A. | \(\frac{∂θ}{∂y}=\frac{sinθ}{r} \) |
B. | \(\frac{∂θ}{∂y}=cosθsinθ\) |
C. | \(\frac{∂θ}{∂y}=\frac{cosθ}{r}\) |
D. | \(\frac{∂θ}{∂y}=\frac{sin2θ}{r}\) |
Answer» D. \(\frac{∂θ}{∂y}=\frac{sin2θ}{r}\) | |
9. |
In polar form the term, \(\frac{∂θ}{∂x}\) is given by______ |
A. | \(\frac{∂θ}{∂x}=\frac{sinθ}{r} \) |
B. | \(\frac{∂θ}{∂x}=-cosθsinθ \) |
C. | \(\frac{∂θ}{∂x}=-\frac{cosθ}{r}\) |
D. | \(\frac{∂θ}{∂x}=\frac{-sinθ}{r}\) |
Answer» E. | |
10. |
In polar form the term, \(\frac{∂r}{∂y}\) is given by______ |
A. | \(\frac{∂r}{∂y}=sinθ\) |
B. | \(\frac{∂r}{∂y}=cosθsinθ\) |
C. | \(\frac{∂r}{∂y}=cosθ\) |
D. | \(\frac{∂r}{∂y}=sin2θ\) |
Answer» B. \(\frac{∂r}{∂y}=cosθsinθ\) | |
11. |
In polar form the term, \(\frac{∂r}{∂x}\) is given by______ |
A. | \(\frac{∂r}{∂x}=sinθ\) |
B. | \(\frac{∂r}{∂x}=cosθsinθ\) |
C. | \(\frac{∂r}{∂x}=cosθ \) |
D. | \(\frac{∂r}{∂x}=sin2θ\) |
Answer» D. \(\frac{∂r}{∂x}=sin2θ\) | |
12. |
The transformation from Cartesian to plane coordinates in y-direction is given by ______ |
A. | y=rsinθ |
B. | y=rcosθ |
C. | y=rcos2θ |
D. | y=rsin2θ |
Answer» B. y=rcosθ | |
13. |
The transformation from Cartesian to plane coordinates in x-direction is given by ______ |
A. | x=rsinθ |
B. | x=rcosθ |
C. | x=rcos2θ |
D. | x=rsin2θ |
Answer» C. x=rcos2θ | |