Explore topic-wise MCQs in Soil Mechanics.

This section includes 13 Mcqs, each offering curated multiple-choice questions to sharpen your Soil Mechanics knowledge and support exam preparation. Choose a topic below to get started.

1.

The time factor Tv for the vertical flow is given by _______

A. \(T_v=\frac{C_{vz} t}{H^2} \)
B. \(T_v=\frac{-C_{rz} t}{H^2} \)
C. \(T_v=\frac{C_{vz}}{H^2} \)
D. \(T_v=\frac{C_{vz} t}{H}\)
Answer» B. \(T_v=\frac{-C_{rz} t}{H^2} \)
2.

The equation given by Carillo in 1942 relating the degree of consolidation in one dimensional flow (Uz) and radial flow (Ur) is _______

A. (1-U)=(1-Uz)(1+Ur)
B. (1-U)=(1-Uz)(1-Ur)
C. (1-U)=(1+Uz)(1-Ur)
D. (1-U)=(1+Uz)(1+Ur)
Answer» C. (1-U)=(1+Uz)(1-Ur)
3.

The one dimensional flow part of governing consolidation equation of three dimensional consolidation having radial symmetry is _______

A. \(\frac{∂\overline{u}}{∂t}=C_{vr} \frac{∂\overline{u}}{∂r^2}\)
B. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\)
C. \(\frac{∂\overline{u}}{∂t}=C_{vz} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\)
D. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})\)
Answer» B. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{∂\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\)
4.

The radial flow part of governing consolidation equation of three dimensional consolidation having radial symmetry is _______

A. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})\)
B. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\)
C. \(\frac{∂\overline{u}}{∂t}=C_{vz} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\)
D. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})\)
Answer» B. \(\frac{∂\overline{u}}{∂t}=C_{vr} (\frac{\overline{u}}{∂r^2}+\frac{1}{r}\frac{∂\overline{u}}{∂r})+C_{vz}\frac{∂^2 \overline{u}}{∂z^2}\)
5.

In case of radial symmetry, \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}\) is_________

A. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}\)
B. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}\)
C. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=-\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}\)
D. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=-\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}\)
Answer» B. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}\)
6.

The term \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}\) in terms of r and θ is given by _______

A. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}-\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\)
B. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}+\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\)
C. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}-\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\)
D. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}+\frac{1}{c^2}\frac{∂^2 \overline{u}}{∂θ^2}\)
Answer» C. \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}-\frac{1}{r} \frac{∂\overline{u}}{∂r}-\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\)
7.

The partial differentiation of excess hydrostatic pressure \overline{u} as a function of r and θ with respect to x is given by _______

A. \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r}\frac{∂\overline{u}}{∂θ} sinθ\)
B. \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} cosθ\)
C. \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} sinθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} sinθ\)
D. \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} sinθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} cosθ\)
Answer» B. \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r} \frac{∂\overline{u}}{∂θ} cosθ\)
8.

In polar form the term, \(\frac{∂θ}{∂y}\) is given by______

A. \(\frac{∂θ}{∂y}=\frac{sinθ}{r} \)
B. \(\frac{∂θ}{∂y}=cosθsinθ\)
C. \(\frac{∂θ}{∂y}=\frac{cosθ}{r}\)
D. \(\frac{∂θ}{∂y}=\frac{sin2θ}{r}\)
Answer» D. \(\frac{∂θ}{∂y}=\frac{sin2θ}{r}\)
9.

In polar form the term, \(\frac{∂θ}{∂x}\) is given by______

A. \(\frac{∂θ}{∂x}=\frac{sinθ}{r} \)
B. \(\frac{∂θ}{∂x}=-cosθsinθ \)
C. \(\frac{∂θ}{∂x}=-\frac{cosθ}{r}\)
D. \(\frac{∂θ}{∂x}=\frac{-sinθ}{r}\)
Answer» E.
10.

In polar form the term, \(\frac{∂r}{∂y}\) is given by______

A. \(\frac{∂r}{∂y}=sinθ\)
B. \(\frac{∂r}{∂y}=cosθsinθ\)
C. \(\frac{∂r}{∂y}=cosθ\)
D. \(\frac{∂r}{∂y}=sin2θ\)
Answer» B. \(\frac{∂r}{∂y}=cosθsinθ\)
11.

In polar form the term, \(\frac{∂r}{∂x}\) is given by______

A. \(\frac{∂r}{∂x}=sinθ\)
B. \(\frac{∂r}{∂x}=cosθsinθ\)
C. \(\frac{∂r}{∂x}=cosθ \)
D. \(\frac{∂r}{∂x}=sin2θ\)
Answer» D. \(\frac{∂r}{∂x}=sin2θ\)
12.

The transformation from Cartesian to plane coordinates in y-direction is given by ______

A. y=rsinθ
B. y=rcosθ
C. y=rcos2θ
D. y=rsin2θ
Answer» B. y=rcosθ
13.

The transformation from Cartesian to plane coordinates in x-direction is given by ______

A. x=rsinθ
B. x=rcosθ
C. x=rcos2θ
D. x=rsin2θ
Answer» C. x=rcos2θ