

MCQOPTIONS
Saved Bookmarks
This section includes 14 Mcqs, each offering curated multiple-choice questions to sharpen your Heat Transfer Operations knowledge and support exam preparation. Choose a topic below to get started.
1. |
What is the value of the constant C when the condenser is placed horizontally?
|
A. | 0.942 |
B. | 0.725 |
C. | 0.325 |
D. | 0.027 |
Answer» C. 0.325 | |
2. |
What is the value of the constant C when the condenser is placed vertically?
|
A. | 0.0943 |
B. | 0.943 |
C. | 0.725 |
D. | 0.633 |
Answer» C. 0.725 | |
3. |
What is the relation between the heat transfer coefficient vs its film thickness value at a point x? |
A. | h<sub>x</sub> = K/ |
B. | h<sub>avg</sub> = ( frac{8}{3} K/ delta ) |
C. | h<sub>avg</sub> = /K |
D. | h<sub>avg</sub> = ( frac{4}{3} delta/K ) |
Answer» B. h<sub>avg</sub> = ( frac{8}{3} K/ delta ) | |
4. |
What is the relation between the averaged heat transfer coefficient over the entire condenser length vs its film thickness value at a point x? |
A. | h<sub>avg</sub> = ( frac{4}{3} K/ delta ) |
B. | h<sub>avg</sub> = ( frac{8}{3} K/ delta ) |
C. | h<sub>avg</sub> = ( frac{8}{3} delta/K ) |
D. | h<sub>avg</sub> = ( frac{4}{3} delta/K ) |
Answer» B. h<sub>avg</sub> = ( frac{8}{3} K/ delta ) | |
5. |
What is the relation between the averaged heat transfer coefficient over the entire condenser length vs its value at a point x? |
A. | ( frac{h_{avg}}{h_x} ) =4 |
B. | ( frac{h_{avg}}{h_x} = frac{2}{3} ) |
C. | ( frac{h_{avg}}{h_x} = frac{4}{3} ) |
D. | ( frac{h_{avg}}{h_x} = frac{3}{4} ) |
Answer» D. ( frac{h_{avg}}{h_x} = frac{3}{4} ) | |
6. |
What is the expression for Averaged convective heat transfer coefficient for a vertical condenser? |
A. | h<sub>VER</sub>=0.943 ([ frac{K^3 p^2 g h_{fg}}{ mu L(T_{sat} T_L )}]^{0.25} ) |
B. | h<sub>VER</sub>=0.943 ([ frac{K^3 p^2 g h_{fg}}{ mu L(T_{sat} T_L )}]^{0.33} ) |
C. | h<sub>VER</sub>=0.943 ([ frac{K^3 p^2 g h_{fg}}{ mu L(T_{sat} T_L )}]^{0.35} ) |
D. | h<sub>VER</sub>=0.943 ([ frac{K^3 p^2 g h_{fg}}{ mu L(T_{sat} T_L )}]^{25} ) |
Answer» B. h<sub>VER</sub>=0.943 ([ frac{K^3 p^2 g h_{fg}}{ mu L(T_{sat} T_L )}]^{0.33} ) | |
7. |
What is the term TL in the Nusselt theory of condensation equation for film thickness?
|
A. | Liquid temperature |
B. | Gas temperature |
C. | Wall temperature |
D. | Bulk temperature |
Answer» B. Gas temperature | |
8. |
What is the expression for the laminar film thickness of the condensate at a distance of x from the top of the condenser? |
A. | =[4K(T<sub>sat</sub> T<sub>L</sub>) x)/( gh<sub>fg</sub>)]<sup>1/2</sup> |
B. | =[4K(T<sub>sat</sub> T<sub>L</sub>) x)/( gh<sub>fg</sub>)]<sup>1/4</sup> |
C. | =[4K(T<sub>sat</sub> T<sub>L</sub>) x)/( gh<sub>fg</sub>)]<sup>1/8</sup> |
D. | =[K(T<sub>sat</sub> T<sub>L</sub>) x)/( gh<sub>fg</sub>)]<sup>1/4</sup> |
Answer» C. =[4K(T<sub>sat</sub> T<sub>L</sub>) x)/( gh<sub>fg</sub>)]<sup>1/8</sup> | |
9. |
What is the expression for flow velocity of the condensate if the density of the vapour is not zero? |
A. | U= ( frac{ rho rho v}{ mu}g( delta- frac{y^2}{2}) ) |
B. | U= ( rho g( delta y - frac{y^2}{2}) ) |
C. | U= ( frac{ rho}{ mu rho v}g( delta y-y^2) ) |
D. | U= ( frac{( rho- rho v)}{ mu}g( delta y- frac{y^2}{2}) ) |
Answer» E. | |
10. |
What is the term delta in the expression for velocity of condensate flow?
|
A. | Final stable film thickness |
B. | Film thickness at y |
C. | Average film thickness |
D. | Film thickness at x |
Answer» E. | |
11. |
What is the expression for mass flow rate of condensate in a condenser? |
A. | M = ( frac{ rho^2}{ mu}g( delta y- frac{y^2}{2}) ) |
B. | M = ( frac{ rho^2}{ mu}g( delta y- frac{y^3}{2}) ) |
C. | M = ( frac{ rho^2}{ mu}g delta( frac{y^3}{3}) ) |
D. | M = ( frac{ rho^2}{ mu}g( frac{ delta^3}{3}) ) |
Answer» E. | |
12. |
What is the term y in the expression for velocity of condensate flow?
|
A. | Film thickness |
B. | Film thickness at y |
C. | Distance from the wall at x |
D. | Film thickness at x |
Answer» E. | |
13. |
What is the expression for the flow velocity of the falling film in a vertical condenser? |
A. | U= ( frac{ rho}{ mu}g( delta- frac{y^2}{2}) ) |
B. | U= ( rho g( delta y - frac{y^2}{2}) ) |
C. | U= ( frac{ rho}{ mu}g( delta y-y^2) ) |
D. | U= ( frac{ rho}{ mu}g( delta y- frac{y^2}{2}) ) |
Answer» E. | |
14. |
Which one of the following is not an assumption of condensation heat regime taken to calculate the heat transfer coefficient? |
A. | Presence of linear temperature profile |
B. | Absence of high pressure |
C. | Absence of viscous shear of the vapour |
D. | Thickness of the film is too small to create a temperature difference |
Answer» C. Absence of viscous shear of the vapour | |