

MCQOPTIONS
Saved Bookmarks
This section includes 8 Mcqs, each offering curated multiple-choice questions to sharpen your R Programming knowledge and support exam preparation. Choose a topic below to get started.
1. |
Which of the following produces the variance covariance matrix? |
A. | sd(x, na.rm=TRUE) |
B. | mad(x, na.rm=TRUE) |
C. | fivenum(x, na.rm=TRUE) |
D. | var(x, na.rm=TRUE) |
Answer» E. | |
2. |
Which of the following finds the maximum value in the vector x, exclude missing values? |
A. | rm(x) |
B. | max(x, na.rm=TRUE) |
C. | all(x) |
D. | x%in%y |
Answer» C. all(x) | |
3. |
Which of the following tests each element of x for membership in y? |
A. | y%in%x |
B. | all(x) |
C. | any(x) |
D. | x%in%y |
Answer» E. | |
4. |
Which of the following truncates real x to integers? |
A. | as.order(x) |
B. | as.integer(x) |
C. | as.numeric(x) |
D. | as.character(x) |
Answer» C. as.numeric(x) | |
5. |
Which of the following is uniform distribution? |
A. | dunif(x, min=0, max=1, log = FALSE) |
B. | punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE) |
C. | qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE) |
D. | runif(n, min=0, max=1) |
Answer» B. punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE) | |
6. |
which of the following statement gives cumulative sum? |
A. | cumsum(x,na=rm=TRUE) |
B. | cumprod(x) |
C. | cummax(x) |
D. | cummin(x) |
Answer» B. cumprod(x) | |
7. |
Which of the following statement is normal distribution? |
A. | dnorm(x, mean=0, sd=1, log = FALSE) |
B. | pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) |
C. | qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) |
D. | rnorm(n, mean=0, sd=1) |
Answer» B. pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) | |
8. |
Which of the following statement find cases with no missing values? |
A. | complete <- subset(data.df,complete.cases(data.df) |
B. | complete <- sub(data.df,complete.cases(data.df) |
C. | complete <- subset(data.df,completeall.cases(data.df) |
D. | new <- old[n1:n2,n3:n4] |
E. | |
Answer» B. complete <- sub(data.df,complete.cases(data.df) | |