

MCQOPTIONS
Saved Bookmarks
This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your R Programming knowledge and support exam preparation. Choose a topic below to get started.
1. |
___________ remove all the variables from the workspace. |
A. | rm(x) |
B. | rm(list=ls()) |
C. | ls() |
D. | attach(mat) |
Answer» C. ls() | |
2. |
_____ list the variables in the workspace. |
A. | rm(x) |
B. | rm(list=ls()) |
C. | ls() |
D. | attach(mat) |
Answer» D. attach(mat) | |
3. |
Which of the following is Mac menu command? |
A. | browse.workspace |
B. | browse.works |
C. | browser.workspace |
D. | a statistical transformation |
Answer» B. browse.works | |
4. |
Which of the following sort a dataframe by the order of the elements in B? |
A. | x[rev(order(x$B)),] |
B. | x[ordersort(x$B),] |
C. | x[order(x$B),] |
D. | x[rev(x$B),] |
Answer» B. x[ordersort(x$B),] | |
5. |
Which of the following statement is another way to get a subset? |
A. | subsetcon(dataset,logical) |
B. | data.df[data.df=logical] |
C. | sub(dataset,logical) |
D. | subcon(dataset,logical) |
Answer» C. sub(dataset,logical) | |
6. |
which of the following statement chose those objects meeting a logical criterion? |
A. | sub(dataset,logical) |
B. | subset(dataset,logical) |
C. | subsetcon(dataset,logical) |
D. | subcon(dataset,logical) |
Answer» C. subsetcon(dataset,logical) | |
7. |
Which of the following statement read a tab or space delimited file? |
A. | read.table(filename,header=TRUE) |
B. | read.CSV(filename,header=TRUE) |
C. | read.table(filename,header=FALSE) |
D. | read.tableall(filename,header=TRUE) |
Answer» B. read.CSV(filename,header=TRUE) | |
8. |
Which of the following statement can read csv files? |
A. | read.table(filename,header=TRUE,sep= , ) |
B. | read.csv(filename,header=TRUE,sep= , ) |
C. | read.tab(filename,header=TRUE,sep= , ) |
D. | read.tab(filename,header=False,sep= , ) |
Answer» B. read.csv(filename,header=TRUE,sep= , ) | |
9. |
Which of the following code create a n item vector of random normal deviates? |
A. | x1 <- c(snorm(n)) |
B. | x1 <- c(pnorm(n)) |
C. | x1 <- c(rnorm(n)) |
D. | x1 >- c(norm(n)) |
Answer» D. x1 >- c(norm(n)) | |
10. |
Which of the following code create n samples of size size with probability prob from the binomial? |
A. | z <- rinom(n,size,prob) |
B. | z <- rbinom(n,size,prob) |
C. | z <- binom(n,size,prob) |
D. | z >- nom(n,size,prob) |
Answer» C. z <- binom(n,size,prob) | |