MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 10851. |
The \[pH\] of a \[{{10}^{-9}}M\] solution of \[HCl\] in water is [UPSEAT 2000, 02] |
| A. | 8 |
| B. | ? 8 |
| C. | Between 7 and 8 |
| D. | Between 6 and 7 |
| Answer» E. | |
| 10852. |
Which of the following factors will favour the reverse reaction in a chemical equilibrium [AIIMS 1982] |
| A. | Increase in the concentration of one of the reactants |
| B. | Removal of at least one of the product at regular time intervals |
| C. | Increase in the concentration of one or more products |
| D. | None of these |
| Answer» D. None of these | |
| 10853. |
For a weak acid, the incorrect statement is [Pb. PMT 2004] |
| A. | Its dissociation constant is low |
| B. | Its \[p{{K}_{a}}\] is very low |
| C. | It is partially dissociated |
| D. | Solution of its sodium salt is alkaline in water |
| Answer» C. It is partially dissociated | |
| 10854. |
A buffer solution can be prepared from a mixture of [IIT 1999; KCET 1999; MP PMT 2002] |
| A. | Sodium acetate and acetic acid in water |
| B. | Sodium acetate and hydrochloric acid in water |
| C. | Ammonia and ammonium chloride in water |
| D. | Ammonia and sodium hydroxide in water |
| Answer» B. Sodium acetate and hydrochloric acid in water | |
| 10855. |
0.2 molar solution of formic acid is ionized 3.2%. Its ionization constant is [MP PMT 1991] |
| A. | \[1\times {{10}^{-12}}\] |
| B. | \[2.1\times {{10}^{-4}}\] |
| C. | \[1.25\times {{10}^{-6}}\] |
| D. | \[1\times {{10}^{-14}}\] |
| Answer» C. \[1.25\times {{10}^{-6}}\] | |
| 10856. |
For a weak acid \[HA\] with dissociation constant \[{{10}^{-9}},\,\,pOH\] of its 0.1 M solution is [CBSE PMT 1989] |
| A. | 9 |
| B. | 3 |
| C. | 11 |
| D. | 10 |
| Answer» E. | |
| 10857. |
0.5 M ammonium benzoate is hydrolysed to 0.25 percent, hence its hydrolysis constant is [MH CET 2004] |
| A. | \[2.5\times {{10}^{-5}}\] |
| B. | \[1.5\times {{10}^{-4}}\] |
| C. | \[3.125\times {{10}^{-6}}\] |
| D. | \[6.25\times {{10}^{-4}}\] |
| Answer» D. \[6.25\times {{10}^{-4}}\] | |
| 10858. |
On the velocity in a reversible reaction, the correct explanation of the effect of catalyst is [MP PMT 1987] |
| A. | It provides a new reaction path of low activation energy |
| B. | It increases the kinetic energy of reacting molecules |
| C. | It displaces the equilibrium state on right side |
| D. | It decreases the velocity of backward reaction |
| Answer» B. It increases the kinetic energy of reacting molecules | |
| 10859. |
\[2N{{O}_{2}}\]⇌\[2NO+{{O}_{2}};\,\,K=1.6\times {{10}^{-12}}\] \[NO+\frac{1}{2}{{O}_{2}}\]⇌\[N{{O}_{2}}{K}'=?\] [CPMT 1996] |
| A. | \[{K}'=\frac{1}{{{K}^{2}}}\] |
| B. | \[{K}'=\frac{1}{K}\] |
| C. | \[{K}'=\frac{1}{\sqrt{K}}\] |
| D. | None of these |
| Answer» D. None of these | |
| 10860. |
In a reversible reaction, the catalyst [KCET 2003] |
| A. | Increases the activation energy of the backward reaction |
| B. | Increases the activation energy of the forward reaction |
| C. | Decreases the activation energy of both, forward and backward reaction |
| D. | Decreases the activation energy of forward reaction |
| Answer» D. Decreases the activation energy of forward reaction | |
| 10861. |
In the reaction, \[{{A}_{2}}(g)+4{{B}_{2}}(g)\]⇌ \[2A{{B}_{4}}(g)\] \[\Delta H |
| A. | Low temperature, high pressure |
| B. | High temperature, low pressure |
| C. | Low temperature, low pressure |
| D. | High temperature, high pressure |
| Answer» B. High temperature, low pressure | |
| 10862. |
The concentration of hydrogen ion in water is [MP PET 1990] |
| A. | 8 |
| B. | \[1\times {{10}^{-7}}\] |
| C. | 7 |
| D. | \[1/7\] |
| Answer» C. 7 | |
| 10863. |
In which one of the following gaseous equilibria \[{{K}_{p}}\] is less than \[{{K}_{c}}\] [EAMCET 1989; MP PET 1994; Pb. PMT 2000; KCET 2001; CBSE PMT 2002] |
| A. | \[{{N}_{2}}{{O}_{4}}\]⇌ \[2N{{O}_{2}}\] |
| B. | \[2HI\]⇌\[{{H}_{2}}+{{I}_{2}}\] |
| C. | \[2S{{O}_{2}}+{{O}_{2}}\]⇌ \[2S{{O}_{3}}\] |
| D. | \[{{N}_{2}}+{{O}_{2}}\] ⇌ \[2NO\] |
| Answer» D. \[{{N}_{2}}+{{O}_{2}}\] ⇌ \[2NO\] | |
| 10864. |
The aqueous solution of \[CuS{{O}_{4}}\] is [CPMT 1985] |
| A. | Acidic |
| B. | Basic |
| C. | Neutral |
| D. | Amphoteric |
| Answer» B. Basic | |
| 10865. |
Which of the following statements is true about photochemical smog? |
| A. | It is reducing in nature. |
| B. | It is formed in winter. |
| C. | It is a sulphurous smog. |
| D. | Components of the smog, NO and \[{{O}_{3}}\], irritate the nose and throat and their high concentration causes headache, chest pain, dryness of the throat, cough and difficulty in breathing. |
| Answer» E. | |
| 10866. |
Leaded petrol used to be the primary source of air-borne lead emission. This problem has been overcome by |
| A. | using TEL loaded petrol |
| B. | using ethanol-mixed petrol |
| C. | using unleaded petrol |
| D. | Using MTBE loaded petrol |
| Answer» D. Using MTBE loaded petrol | |
| 10867. |
Consider following sets: Blue colour solution changes to colourless (or fades) in |
| A. | I, II, III |
| B. | I, II |
| C. | II, III |
| D. | I, III |
| Answer» E. | |
| 10868. |
The standard EMF of a cell having one electron change is found to be 0.591 V at \[\text{25}{}^\circ \text{C}\]. The equilibrium constant of the reaction is: |
| A. | \[1.0\times {{10}^{30}}\] |
| B. | \[1.0\times {{10}^{5}}\] |
| C. | \[1.0\times {{10}^{10}}\] |
| D. | \[1.0\times {{10}^{1}}\] |
| Answer» D. \[1.0\times {{10}^{1}}\] | |
| 10869. |
The same quantity of electricity was passed through two electrolytic cells containing a salt of metal X and zinc sulphate solution respectively using platinum electrode. 0.468 g of metal X and 1.532 g of Zn were deposited. The equivalent mass of X is (At. wt. of Zn is 65.4 u) |
| A. | 9.98 g/equiv |
| B. | 3.2 g/equiv |
| C. | 5.9 g/equiv |
| D. | 0.99 g/equiv |
| Answer» B. 3.2 g/equiv | |
| 10870. |
The standard electrode potential for the following reaction is +1.33V. What is the potential at \[pH=2.0\]? \[C{{r}_{2}}{{O}_{7}}^{2-}(aq.1M)+14\,{{H}^{+}}(aq)+6{{e}^{-}}\xrightarrow{{}}\] \[2C{{r}^{3+}}(aq.\,1\,M)+7{{H}_{2}}O(\ell )\] |
| A. | +1.820 V |
| B. | +1.990 V |
| C. | +1.608 V |
| D. | +1.0542 V |
| Answer» E. | |
| 10871. |
For the following cell reaction \[Pb(s)+H{{g}_{2}}S{{O}_{4}}(s)PbS{{O}_{4}}(s)+2Hg(l)\] \[E_{cell}^{o}=0.92V\] \[{{K}_{sp}}(PbS{{O}_{4}})=2\times {{10}^{-8}},\]\[{{K}_{sp}}(H{{g}_{2}}S{{O}_{4}})=1\times {{10}^{-6}}\] Hence, \[{{E}_{cell}}\] is |
| A. | 0.92 V |
| B. | 0.89 V |
| C. | 1.04 V |
| D. | 0.95 V |
| Answer» E. | |
| 10872. |
Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100 ohm. The conductivity of this solution is 1.29 S/m. Resistance of the same cell filled with 0.02 M of the same solution if the electrolyte is 520 ohm. The molar conductivity of 0.02 M solution of electrolyte would be: |
| A. | \[124\times {{10}^{-4}}S-{{m}^{2}}/mol\] |
| B. | \[1240\times {{10}^{-4}}S-{{m}^{2}}/mol\] |
| C. | \[1.24\times {{10}^{-4}}S-{{m}^{2}}/mol\] |
| D. | \[12.4\times {{10}^{-4}}S-{{m}^{2}}/mol\] |
| Answer» B. \[1240\times {{10}^{-4}}S-{{m}^{2}}/mol\] | |
| 10873. |
The electrolysis of acetate solution produces ethane according to reaction:\[2C{{H}_{3}}CO{{O}^{-}}\xrightarrow{{}}{{C}_{2}}{{H}_{6}}(g)+2C{{O}_{2}}(g)+2{{e}^{-}}\]The current efficiency of the process is 80%. What volume of gases would be produced at \[\text{27}{}^\circ \text{C}\] and 740 torr, if the current of 0.5 A is passed through the solution for 96.45 min? |
| A. | 6.0 L |
| B. | 0.60 L |
| C. | 1.365 L |
| D. | 0.91 L |
| Answer» E. | |
| 10874. |
The temperature coefficient of a cell whose operation is based on the reaction\[Pb(s)+HgC{{l}_{2}}(aq)\xrightarrow{{}}PbC{{l}_{2}}(aq)+Hg(l)\]\[{{\left( \frac{dE}{dT} \right)}_{p}}=1.5\times {{10}^{-4}}V/K\,at\,298K\]The change in entropy (in J/K mol) during the operation is: |
| A. | 8627 |
| B. | 57.9 |
| C. | 28.95 |
| D. | 14.475 |
| Answer» D. 14.475 | |
| 10875. |
The resistance of 0.1N acetic acid when measured in a cell with cell constant \[1.5\,c{{m}^{-1}}\] is \[5.250\,\Omega \]. The value of \[{{\lambda }_{eq}}\] of \[0.1\,N\,AcOH\] is |
| A. | 60 |
| B. | 90 |
| C. | 18.4 |
| D. | 0.023 |
| Answer» B. 90 | |
| 10876. |
Salts of A (atomic weight: 7), B (atomic weight: 27), and C (atomic weight: 48) were electrolyzed under identical condition using the same quantity of electricity. It was found that when 2.1 got A was deposited, the weights of B and C deposited were 2.7 and 7.2 g, respectively. The valencies of A, B and C, respectively are: |
| A. | 3, 1 and 2 |
| B. | 1, 3 and 2 |
| C. | 3, 1 and 3 |
| D. | 2, 3 and 2 |
| Answer» C. 3, 1 and 3 | |
| 10877. |
Which of the following is correct statement- |
| A. | Conductivity & molar conductivity of solution increase on dilution |
| B. | Voltage of button cell remain unchanged throughout its life time |
| C. | On electrolysis of aqueous \[CuS{{O}_{4}}\] using platinum electrode its concentration \[[C{{u}^{2+}}]\] remain constant |
| D. | On electrolysis of aqueous \[NaCl,\] solution becomes acidic |
| Answer» C. On electrolysis of aqueous \[CuS{{O}_{4}}\] using platinum electrode its concentration \[[C{{u}^{2+}}]\] remain constant | |
| 10878. |
Galvanic cell involves |
| A. | conversion of thermal energy (Heating) into electrical energy |
| B. | conversion of electrical energy into chemical energy |
| C. | conversion of chemical energy into thermal energy |
| D. | conversion of chemical energy into electrical energy |
| Answer» E. | |
| 10879. |
When a lead storage battery is discharged, then |
| A. | \[S{{O}_{2}}\] is evolved |
| B. | lead is formed |
| C. | lead sulphate is consumed |
| D. | sulphuric acid is consumed |
| Answer» E. | |
| 10880. |
The equivalent conductances of two strong electrolytes a infinite dilution in \[{{H}_{2}}O\] (where ions move freely througl a solution) at \[25{}^\circ C\]are given below \[{{\Lambda }^{o}}_{C{{H}_{3}}COONa}=91.0\,\,S\,\,c{{m}^{2}}\text{/}\,Eq\] \[{{\Lambda }^{o}}_{HCl}=426.2\,\,S\,\,c{{m}^{2}}\text{/}\,Eq\] What additional information/ quantity one needs to calculate \[\Lambda {}^\circ \]of an aqueous solution of aceti acid? |
| A. | \[\Lambda {}^\circ \]of \[NaCl\] |
| B. | \[\Lambda {}^\circ \]of\[C{{H}_{3}}\]COOK |
| C. | The limiting equivalent conductance of \[{{H}^{+}}(\lambda _{{{H}^{+}}}^{\circ })\] |
| D. | \[\Lambda {}^\circ \]of chloroaceti cacid (Cl\[C{{H}_{2}}\]COOH) |
| Answer» B. \[\Lambda {}^\circ \]of\[C{{H}_{3}}\]COOK | |
| 10881. |
For\[Ag\to A{{g}^{+}}+{{e}^{-}},\] \[E{}^\circ =-0.798V\] \[{{V}^{2+}}+V{{O}^{2+}}+2{{H}^{+}}\to 2{{V}^{3+}}+{{H}_{2}}O,\] \[E\text{ }\!\!{}^\circ\!\!\text{ }=-0.614\text{ }V\] \[{{V}^{3+}}+A{{g}^{+}}+{{H}_{2}}O\to V{{O}^{2+}}+2{{H}^{+}}+Ag,\] \[E{}^\circ =-\,0.438\text{ }V\] Then \[E{}^\circ \]for the reaction \[{{V}^{3+}}+{{e}^{-}}\to {{V}^{2+}}\] is |
| A. | + 0.255V |
| B. | \[-\,0.255\,V\] |
| C. | \[-\,0.254\,V\] |
| D. | \[-\,1.055\,V\] |
| Answer» C. \[-\,0.254\,V\] | |
| 10882. |
Given\[l\text{/}a=0.5\,c{{m}^{-1}}\], R = 50 ohm, N = 1.0. The equivalent conductance of the electrolytic cell is |
| A. | \[100\,oh{{m}^{-1}}c{{m}^{2}}g\,E{{q}^{-1}}\] |
| B. | \[20\,oh{{m}^{-1}}c{{m}^{2}}g\,E{{q}^{-1}}\] |
| C. | \[300\,oh{{m}^{-1}}c{{m}^{2}}g\,E{{q}^{-1}}\] |
| D. | \[10\,oh{{m}^{-1}}c{{m}^{2}}g\,E{{q}^{-1}}\] |
| Answer» E. | |
| 10883. |
Given standard electrode potentials \[F{{e}^{++}}+2{{e}^{-}}\,\to \,Fe\,;\,\,\,\,{{E}^{o}}=-0.440\,\,V\] \[F{{e}^{+++}}+3{{e}^{-}}\,\to \,Fe\,;\,\,\,\,{{E}^{o}}=-0.036\,\,V\] The standard electrode potential \[({{E}^{o}})\] for \[F{{e}^{+++}}+{{e}^{-}}\to \,F{{e}^{++}}\] is [AIIMS 1982] |
| A. | ? 0.476 V |
| B. | ? 0.404 V |
| C. | + 0.404 V |
| D. | + 0.771 V |
| Answer» E. | |
| 10884. |
For a spontaneous reaction the \[\Delta G,\] equilibrium constant (K) and \[E_{Cell}^{o}\] will be respectively [AIEEE 2005] |
| A. | \[-ve,\,>1,\,+ve\] |
| B. | \[+ve,\,>1,\,-ve\] |
| C. | \[-ve,\,<1,\,-ve\] |
| D. | \[-ve,\,>1,\,-ve\] |
| Answer» B. \[+ve,\,>1,\,-ve\] | |
| 10885. |
The \[{{E}^{0}}_{{{M}^{3+}}/{{M}^{2+}}}\]values for \[Cr,\ Mn,\ Fe\]and \[Co\]are \[-0.41,\ +1.57,\ +0.77\]and \[+1.97\ V\] respectively. For which one of these metals the change in oxidation state from \[+2\] to \[+3\]is easiest [AIEEE 2004] |
| A. | \[Fe\] |
| B. | Mn |
| C. | Cr |
| D. | Co |
| Answer» D. Co | |
| 10886. |
The correct name of \[[Pt{{(N{{H}_{3}})}_{4}}C{{l}_{2}}]\,\,[PtC{{l}_{4}}]\] is [MP PET 2003] |
| A. | Tetraammine dichloro platinum (iv) tetrachloro platinate (ii) |
| B. | Dichloro tetra ammine platinium (iv) tetrachloro platinate (ii) |
| C. | Tetrachloro platinum (ii) tetraammine platinate (iv) |
| D. | Tetrachloro platinum (ii) dichloro tetraammine platinate (iv) |
| Answer» B. Dichloro tetra ammine platinium (iv) tetrachloro platinate (ii) | |
| 10887. |
The pair of the compounds in which both the metals are in the highest possible oxidation state is [IIT-JEE (Screening) 2004] |
| A. | \[{{[Fe{{(CN)}_{6}}]}^{3-}},{{[Co{{(CN)}_{6}}]}^{3-}}\] |
| B. | \[Cr{{O}_{2}}C{{l}_{2}},MnO_{4}^{-}\] |
| C. | \[Ti{{O}_{3}},Mn{{O}_{2}}\] |
| D. | \[{{[Co{{(CN)}_{6}}]}^{3-}},Mn{{O}_{3}}\] |
| Answer» C. \[Ti{{O}_{3}},Mn{{O}_{2}}\] | |
| 10888. |
The complex chlorocompound diaquatriammine cobalt (III) chloride is represented as [CBSE PMT 2002] |
| A. | \[[Co{{(N{{H}_{3}})}_{3}}\,{{({{H}_{2}}O)}_{3}}]C{{l}_{2}}\] |
| B. | \[[Co{{(N{{H}_{2}})}_{3}}\,\,{{({{H}_{2}}O)}_{2}}]C{{l}_{2}}\] |
| C. | \[[CoCl{{(N{{H}_{3}})}_{3}}\,\,{{({{H}_{2}}O)}_{2}}]C{{l}_{3}}\] |
| D. | \[[CoCl{{(N{{H}_{3}})}_{3}}\,\,{{({{H}_{2}}O)}_{2}}]C{{l}_{2}}\] |
| Answer» E. | |
| 10889. |
The IUPAC name of \[\left[ Co{{\left( N{{H}_{3}} \right)}_{6}} \right]C{{l}_{3}}\] is [IIT-JEE 1994] |
| A. | Hexammine cobalt (III) chloride |
| B. | Hexammine cobalt (II) chloride |
| C. | Triammine cobalt (III) trichloride |
| D. | None of these |
| Answer» B. Hexammine cobalt (II) chloride | |
| 10890. |
Pick out the complex compound in which the central metal atom obeys EAN rule strictly [KCET 2003] |
| A. | \[{{K}_{4}}[Fe{{(CN)}_{6}}]\] |
| B. | \[{{K}_{3}}[Fe{{(CN)}_{6}}]\] |
| C. | \[[Cr{{({{H}_{2}}O)}_{6}}]\,C{{l}_{3}}\] |
| D. | \[[Cu{{(N{{H}_{3}})}_{4}}]\,S{{O}_{4}}\] |
| Answer» B. \[{{K}_{3}}[Fe{{(CN)}_{6}}]\] | |
| 10891. |
The EAN of iron in potassium ferricyanide is [Pb. CET 2000] |
| A. | 18 |
| B. | 54 |
| C. | 35 |
| D. | 23 |
| Answer» D. 23 | |
| 10892. |
The oxidation number of Cr in \[[Cr{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}\] is [CBSE PMT 2001] |
| A. | 8 |
| B. | 6 |
| C. | 4 |
| D. | 3 |
| Answer» E. | |
| 10893. |
In \[{{K}_{4}}\left[ Fe{{\left( CN \right)}_{6}} \right],\] the E.A.N. of \[Fe\] is [DCE 2000] |
| A. | 33 |
| B. | 35 |
| C. | 36 |
| D. | 26 |
| Answer» D. 26 | |
| 10894. |
Among the ligands \[N{{H}_{3}}\], en, \[C{{N}^{-}}\] and CO, the correct order of their increasing field strength is |
| A. | CO <\[N{{H}_{3}}\]<en<\[C{{N}^{-}}\] |
| B. | \[N{{H}_{3}}\]<en<\[C{{N}^{-}}\]<CO |
| C. | \[C{{N}^{-}}\]<\[N{{H}_{3}}\]<CO<en |
| D. | en <\[C{{N}^{-}}\]<\[N{{H}_{3}}\]<CO |
| Answer» C. \[C{{N}^{-}}\]<\[N{{H}_{3}}\]<CO<en | |
| 10895. |
Match Column I with Column II and select the con- answer with respect to hybridisation using the codes gr below: Column I (Complex) Column II (Hybridisation) (I) \[{{[Au{{F}_{4}}]}^{-}}\] (P) \[ds{{p}^{2}}\]hybridisation (II) \[{{[Cu{{(CN)}_{4}}]}^{3-}}\] (Q) \[ds{{p}^{3}}\]hybridisation (III) \[{{[Cu{{({{C}_{2}}{{O}_{4}})}_{3}}]}^{3-}}\] (R) \[s{{p}^{3}}\,{{d}^{2}}\]hybridisation (IV) \[{{[Fe{{({{H}_{2}}O)}_{5}}NO]}^{2+}}\] (S) \[{{d}^{2}}s{{p}^{3}}\]hybridisation Codes: |
| A. | (I)\[\to \]Q, (II)\[\to \]P, (III)\[\to \]R, (IV)\[\to \]S |
| B. | (I)\[\to \]P, (II)\[\to \]Q, (III)\[\to \]S, (IV)\[\to \]R |
| C. | (I)\[\to \]P, (II)\[\to \]Q, (III)\[\to \]R, (IV)\[\to \]S |
| D. | (I)\[\to \]Q, (II)\[\to \]P, (III)\[\to \]S, (IV)\[\to \]R |
| Answer» C. (I)\[\to \]P, (II)\[\to \]Q, (III)\[\to \]R, (IV)\[\to \]S | |
| 10896. |
The correct order of increasing order of oxidising power is [DCE 2000] |
| A. | \[{{F}_{2}}<C{{l}_{2}}<B{{r}_{2}}<{{I}_{2}}\] |
| B. | \[{{F}_{2}}<B{{r}_{2}}<C{{l}_{2}}<{{I}_{2}}\] |
| C. | \[C{{l}_{2}}<B{{r}_{2}}<{{F}_{2}}<{{I}_{2}}\] |
| D. | \[{{I}_{2}}<B{{r}_{2}}<C{{l}_{2}}<{{F}_{2}}\] |
| Answer» E. | |
| 10897. |
Metallic nature and basic nature of the oxides ........ as we move along a period |
| A. | Increases |
| B. | Decreases |
| C. | First increases then decreases |
| D. | Remains constant |
| Answer» C. First increases then decreases | |
| 10898. |
Beryllium and aluminium exhibit many properties which are similar. But, the two elements differ in [AIEEE 2004] |
| A. | Forming covalent halides |
| B. | Forming polymeric hydrides |
| C. | Exhibiting maximum covalency in compounds |
| D. | Exhibiting amphoteric nature in their oxides |
| Answer» D. Exhibiting amphoteric nature in their oxides | |
| 10899. |
Strongest reducing agent is [RPMT 1997] |
| A. | \[C{{l}_{2}}\] |
| B. | \[C{{l}^{-}}\] |
| C. | \[B{{r}^{-}}\] |
| D. | \[{{I}^{-}}\] |
| Answer» E. | |
| 10900. |
Which of the following gas does not have an octet or eight electrons in the outer shell [CBSE PMT 2001] |
| A. | Ne |
| B. | Ar |
| C. | Rn |
| D. | He |
| Answer» E. | |