MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 5201. |
As the s-character of hybridisation orbital increases, the bond angle [BHU 2002; RPMT 2002] |
| A. | Increases |
| B. | Decreases |
| C. | Becomes zero |
| D. | Does not change |
| Answer» B. Decreases | |
| 5202. |
Which of the following is not tetrahedral [MP PMT 2001] |
| A. | \[SC{{l}_{4}}\] |
| B. | \[SO_{4}^{2-}\] |
| C. | \[Ni{{(CO)}_{4}}\] |
| D. | \[NiCl_{4}^{2-}\] |
| Answer» B. \[SO_{4}^{2-}\] | |
| 5203. |
Which of the following is not linear [DCE 2001] |
| A. | \[C{{O}_{2}}\] |
| B. | \[Cl{{O}_{2}}\] |
| C. | \[I_{3}^{-}\] |
| D. | None of these |
| Answer» C. \[I_{3}^{-}\] | |
| 5204. |
Which of the following pairs has same structure [BHU 2001] |
| A. | \[P{{H}_{3}}\] and \[BC{{l}_{3}}\] |
| B. | \[S{{O}_{2}}\] and \[N{{H}_{3}}\] |
| C. | \[PC{{l}_{5}}\] and \[S{{F}_{6}}\] |
| D. | \[NH_{4}^{+}\] and \[SO_{4}^{2-}\] |
| Answer» E. | |
| 5205. |
The bond angle is minimum in [Pb. PMT 2001; MP PET 2003; UPSEAT 2004] |
| A. | \[{{H}_{2}}Te\] |
| B. | \[{{H}_{2}}Se\] |
| C. | \[{{H}_{2}}O\] |
| D. | \[{{H}_{2}}S\] |
| Answer» B. \[{{H}_{2}}Se\] | |
| 5206. |
The correct order of hybridization of the central atom in the following species \[N{{H}_{3}}\] \[{{[PtC{{l}_{4}}]}^{2-}},\,PC{{l}_{5}}\] and \[BC{{l}_{3}}\] is [IIT Screening 2001; BHU 2005] |
| A. | \[ds{{p}^{2}},\,\,ds{{p}^{3}},\,\,s{{p}^{2}}\]and \[s{{p}^{3}}\] |
| B. | \[s{{p}^{3}},\,\,ds{{p}^{2}},\,\,ds{{p}^{3}},\,\,s{{p}^{2}}\] |
| C. | \[ds{{p}^{2}},\,\,s{{p}^{2}},\,\,s{{p}^{3}},\,\,ds{{p}^{3}}\] |
| D. | \[ds{{p}^{2}},\,\,s{{p}^{3}},\,\,s{{p}^{2}},\,\,ds{{p}^{3}}\] |
| Answer» C. \[ds{{p}^{2}},\,\,s{{p}^{2}},\,\,s{{p}^{3}},\,\,ds{{p}^{3}}\] | |
| 5207. |
In the complex \[{{[Sb{{F}_{5}}]}^{\,2-}},\]\[s{{p}^{3}}d\] hybridization is present. Geometry of the complex is [Pb. PMT 2000] |
| A. | Square |
| B. | Square pyramidal |
| C. | Square bipyramidal |
| D. | Tetrahedral |
| Answer» C. Square bipyramidal | |
| 5208. |
Which of the following formula does not correctly represent the bonding capacity of the atom involved [CBSE PMT 1990] |
| A. | \[\left[ H-\underset{\underset{H}{\mathop{|}}\,}{\overset{\overset{H}{\mathop{|}}\,}{\mathop{P}}}\,-H \right]\] |
| B. | |
| C. | |
| D. | |
| Answer» E. | |
| 5209. |
Which molecule is not linear [CPMT 1994] |
| A. | \[Be{{F}_{2}}\] |
| B. | \[Be{{H}_{2}}\] |
| C. | \[C{{O}_{2}}\] |
| D. | \[{{H}_{2}}O\] |
| Answer» E. | |
| 5210. |
An octahedral complex is formed, when hybrid orbitals of the following type are involved [DCE 2003] |
| A. | \[s{{p}^{3}}\] |
| B. | \[ds{{p}^{2}}\] |
| C. | \[s{{p}^{3}}{{d}^{2}}\] |
| D. | \[s{{p}^{2}}d\] |
| Answer» D. \[s{{p}^{2}}d\] | |
| 5211. |
Which of the following is not true for metal carbonyls [MP PET 1993] |
| A. | The oxidation state of the metal in the carbonyls is zero |
| B. | The secondary carbonyls are obtained from photo-decomposition |
| C. | Metal carbonyls are single bonded species |
| D. | \[d\pi -p\pi \] overlap is observed in metal carbonyls |
| Answer» E. | |
| 5212. |
In the formation of \[{{K}_{4}}Fe{{(CN)}_{6}},\] the hybridisation involved is |
| A. | \[s{{p}^{2}}\] |
| B. | \[{{d}^{2}}s{{p}^{3}}\] |
| C. | \[{{d}^{3}}s{{p}^{2}}\] |
| D. | \[{{d}^{4}}p\] |
| Answer» C. \[{{d}^{3}}s{{p}^{2}}\] | |
| 5213. |
The type of hybridization involved in the metal ion of \[{{[Ni{{({{H}_{2}}O)}_{6}}]}^{2+}}\] complex is |
| A. | \[{{d}^{3}}s{{p}^{2}}\] |
| B. | \[s{{p}^{3}}{{d}^{2}}\] |
| C. | \[s{{p}^{3}}\] |
| D. | \[ds{{p}^{2}}\] |
| Answer» C. \[s{{p}^{3}}\] | |
| 5214. |
In the complex \[{{[Sb{{F}_{5}}]}^{2-}},\,s{{p}^{3}}d\] hydridisation is present. Geometry of the complex is [Pb. PMT 2000] |
| A. | Square pyramidal |
| B. | Square bipyramidal |
| C. | Tetrahedral |
| D. | Square |
| Answer» B. Square bipyramidal | |
| 5215. |
The geometry of \[Ni{{\left( CO \right)}_{4}}\]and\[Ni{{\left( PP{{h}_{3}} \right)}_{2}}C{{l}_{2}}\]are [BHU 2005] |
| A. | Both square planer |
| B. | Tetrahedral and square planar respectively |
| C. | Both tetrahedral |
| D. | Square planar and tetrahedral respectively |
| Answer» D. Square planar and tetrahedral respectively | |
| 5216. |
The value of the ?spin only? magnetic moment for one of the following configurations is 2.84 BM. the correct one [AIEEE 2005] |
| A. | \[{{d}^{4}}\] (in strong ligand field) |
| B. | \[{{d}^{4}}\] (in weak ligand field) |
| C. | \[{{d}^{3}}\](in weak as well as in strong fields) |
| D. | \[{{d}^{5}}\] (in strong ligand field) |
| Answer» B. \[{{d}^{4}}\] (in weak ligand field) | |
| 5217. |
Which of the following is a \[\pi -\]acid ligand [KCET 1996; AIIMS 2003] |
| A. | \[N{{H}_{3}}\] |
| B. | \[CO\] |
| C. | \[{{F}^{-}}\] |
| D. | Ethylene diamine |
| Answer» C. \[{{F}^{-}}\] | |
| 5218. |
Which of the following is a \[\pi \]- complex |
| A. | Trimethyl aluminium |
| B. | Ferrocene |
| C. | Diethyl zinc |
| D. | Nickel carbonyl |
| Answer» C. Diethyl zinc | |
| 5219. |
Cuprammonium ion \[{{\left[ Cu{{\left( N{{H}_{3}} \right)}_{4}} \right]}^{2+}}\] is [MP PMT 1997; KCET 2002] |
| A. | Tetrahedral |
| B. | Square planar |
| C. | Triangular bipyramid |
| D. | Octahedral |
| Answer» C. Triangular bipyramid | |
| 5220. |
Considering \[{{H}_{2}}O\] as a weak field ligand, the number of unpaired electrons in \[{{[Mn{{({{H}_{2}}O)}_{6}}]}^{2+}}\] will be (At. No. of Mn = 25) asas a ajkk [CBSE PMT 2004] |
| A. | Two |
| B. | Four |
| C. | Three |
| D. | Five |
| Answer» E. | |
| 5221. |
\[C{{N}^{-}}\] is a strong field ligand. This is due to the fact that [CBSE PMT 2004] |
| A. | It can accept electron from metal species |
| B. | It forms high spin complexes with metal species |
| C. | It carries negative charge. |
| D. | It is a pseudohalide |
| Answer» E. | |
| 5222. |
A strong ligand gives a complex which is generally called |
| A. | High spin |
| B. | High energy |
| C. | Low spin |
| D. | Stable |
| Answer» D. Stable | |
| 5223. |
The ligands which can get attached to the central metal ion through more than one atom are called |
| A. | Ambident ligands |
| B. | Polydentate ligands |
| C. | Chelate ligands |
| D. | Neutral ligands |
| Answer» B. Polydentate ligands | |
| 5224. |
The neutral ligand is |
| A. | Chloro |
| B. | Hydroxo |
| C. | Ammine |
| D. | Oxalato |
| Answer» D. Oxalato | |
| 5225. |
The strongest ligand in the following is [MP PET 1995] |
| A. | \[C{{N}^{-}}\] |
| B. | \[B{{r}^{-}}\] |
| C. | \[H{{O}^{-}}\] |
| D. | \[{{F}^{-}}\] |
| Answer» B. \[B{{r}^{-}}\] | |
| 5226. |
Which one of the following is a strong field ligand |
| A. | \[C{{N}^{-}}\] |
| B. | \[NO_{2}^{-}\] |
| C. | \[en\] |
| D. | \[N{{H}_{3}}\] |
| Answer» B. \[NO_{2}^{-}\] | |
| 5227. |
Which of the following shall form an octahedral complex [DCE 2001] |
| A. | \[{{d}^{4}}\](low spin) |
| B. | \[{{d}^{8}}\](high spin) |
| C. | \[{{d}^{6}}\](low spin) |
| D. | None of these |
| Answer» D. None of these | |
| 5228. |
The complex ion which has no ?d ? electrons in the central metal atom is [IIT-JEE Screening 2001] |
| A. | \[{{[Mn{{O}_{4}}]}^{-}}\] |
| B. | \[{{[Co{{(N{{H}_{3}})}_{6}}]}^{3+}}\] |
| C. | \[{{[Fe{{(CN)}_{6}}]}^{3-}}\] |
| D. | \[{{[Cr{{({{H}_{2}}O)}_{6}}]}^{3+}}\] |
| Answer» B. \[{{[Co{{(N{{H}_{3}})}_{6}}]}^{3+}}\] | |
| 5229. |
One mole of the complex compound \[Co{{(N{{H}_{3}})}_{5}}C{{l}_{3}},\] gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of \[AgN{{O}_{3}}\] solution to yield two moles of \[AgCl\,(s)\]. The structure of the complex is [AIEEE 2003] |
| A. | \[[Co{{(N{{H}_{3}})}_{5}}Cl]\,C{{l}_{2}}\] |
| B. | \[[Co{{(N{{H}_{3}})}_{3}}C{{l}_{3}}].\,2N{{H}_{3}}\] |
| C. | \[[Co{{(N{{H}_{3}})}_{4}}C{{l}_{2}}]\,Cl\,.\,N{{H}_{3}}\] |
| D. | \[[Co{{(N{{H}_{3}})}_{4}}Cl]\,C{{l}_{2}}.\,N{{H}_{3}}\] |
| Answer» B. \[[Co{{(N{{H}_{3}})}_{3}}C{{l}_{3}}].\,2N{{H}_{3}}\] | |
| 5230. |
The bond in \[{{K}_{4}}[Fe{{(CN)}_{6}}]\] are: [MP PET 2004] |
| A. | All ionic |
| B. | All covalent |
| C. | Ionic and covalent |
| D. | Ionic, covalent and co-ordiante covalent |
| Answer» E. | |
| 5231. |
Hybridization of Fe in \[{{K}_{3}}Fe{{(CN)}_{6}}\] is [DCE 2002] |
| A. | \[s{{p}^{3}}\] |
| B. | \[ds{{p}^{3}}\] |
| C. | \[s{{p}^{3}}{{d}^{2}}\] |
| D. | \[{{d}^{2}}s{{p}^{3}}\] |
| Answer» E. | |
| 5232. |
Among \[[Ni{{(CO)}_{4}}],{{[Ni{{(CN)}_{4}}]}^{2-}},{{[NiC{{l}_{4}}]}^{2-}}\] species, the hybridization states at the Ni atom are, respectively [CBSE PMT 2004; MP PMT 1992; BHU 1995; AFMC 1997] |
| A. | \[s{{p}^{3}},s{{p}^{3}},ds{{p}^{2}}\] |
| B. | \[ds{{p}^{2}},s{{p}^{3}},s{{p}^{3}}\] |
| C. | \[s{{p}^{3}},ds{{p}^{2}},ds{{p}^{2}}\] |
| D. | \[s{{p}^{3}},ds{{p}^{2}},s{{p}^{3}}\] (At. no. of Ni = 28) |
| Answer» E. | |
| 5233. |
\[{{\left[ Co{{F}_{6}} \right]}^{-3}}\] is formed by ..... hybridization |
| A. | \[{{d}^{2}}s{{p}^{3}}\] |
| B. | \[{{d}^{3}}s{{p}^{2}}\] |
| C. | \[{{d}^{2}}s{{p}^{3}}\] |
| D. | \[s{{p}^{3}}{{d}^{2}}\] |
| Answer» D. \[s{{p}^{3}}{{d}^{2}}\] | |
| 5234. |
Chromium hexacarbonyl is an octahedral compound involving |
| A. | \[s{{p}^{3}}{{d}^{2}}\] |
| B. | \[ds{{p}^{2}}\] |
| C. | \[{{d}^{2}}s{{p}^{3}}\] |
| D. | \[{{d}^{3}}s{{p}^{2}}\] orbitals |
| Answer» D. \[{{d}^{3}}s{{p}^{2}}\] orbitals | |
| 5235. |
\[{{d}^{2}}s{{p}^{3}}\] hybridisation leads to |
| A. | Hexagonal shape |
| B. | Trigonal bipyrimidal |
| C. | Octahedral shape |
| D. | Tetrahedral shape |
| Answer» D. Tetrahedral shape | |
| 5236. |
Back bonding is involved in which of the organometallic compounds |
| A. | \[{{\left[ {{(C{{H}_{3}})}_{3}}Al \right]}_{2}}\] |
| B. | \[M{{g}^{2+}}{{\left( {{C}_{5}}H_{5}^{-} \right)}_{2}}\] |
| C. | \[R-Mg-X\] |
| D. | \[\left[ {{({{C}_{5}}{{H}_{5}})}_{2}}Fe \right]\] |
| Answer» D. \[\left[ {{({{C}_{5}}{{H}_{5}})}_{2}}Fe \right]\] | |
| 5237. |
A complex involving \[ds{{p}^{2}}\] hybridization has |
| A. | A square planar geometry |
| B. | A tetrahedral geometry |
| C. | An octahedral geometry |
| D. | Trigonal planar geometry |
| Answer» B. A tetrahedral geometry | |
| 5238. |
\[[Pt{{\left( N{{H}_{3}} \right)}_{4}}]C{{l}_{2}}\] is [DCE 2001] |
| A. | Square planar |
| B. | Tetrahedral |
| C. | Pyramidal |
| D. | Pentagonal |
| Answer» B. Tetrahedral | |
| 5239. |
The geometry of \[Ni{{\left( CO \right)}_{4}}\] and \[Ni{{\left( PP{{h}_{3}} \right)}_{2}}C{{l}_{2}}\] are [IIT-JEE 1999; DCE 2002] |
| A. | Both square planar |
| B. | Tetrahedral and square planar respectively |
| C. | Both tetrahedral |
| D. | Square planar and tetrahedral respectively |
| Answer» E. | |
| 5240. |
The example of \[ds{{p}^{2}}\] hybridisation is [MP PET 1999; AIIMS 2001] |
| A. | \[Fe(CN)_{6}^{3-}\] |
| B. | \[Ni\left( CN \right)_{4}^{2-}\] |
| C. | \[Zn\left( N{{H}_{3}} \right)_{4}^{2+}\] |
| D. | \[FeF_{6}^{3-}\] |
| Answer» C. \[Zn\left( N{{H}_{3}} \right)_{4}^{2+}\] | |
| 5241. |
The shape of \[{{\left[ Cu{{\left( N{{H}_{3}} \right)}_{4}} \right]}^{2+}}\] is square planar, \[C{{u}^{2+}}\] in this complex is [NCERT 1989; RPET 1999] |
| A. | \[s{{p}^{3}}\] hybridised |
| B. | \[ds{{p}^{2}}\]hybridised |
| C. | \[s{{p}^{3}}d\] hybridised |
| D. | \[s{{p}^{3}}{{d}^{2}}\] hybridized |
| Answer» C. \[s{{p}^{3}}d\] hybridised | |
| 5242. |
What type of hybridization is involved in \[{{[Fe{{(CN)}_{6}}]}^{3-}}\] [AMU 1999] |
| A. | \[{{d}^{2}}s{{p}^{3}}\] |
| B. | \[ds{{p}^{2}}\] |
| C. | \[s{{p}^{3}}{{d}^{2}}\] |
| D. | \[ds{{p}^{3}}\] |
| Answer» B. \[ds{{p}^{2}}\] | |
| 5243. |
What is the shape of \[Fe{{(CO)}_{5}}\] [CBSE PMT 2000] |
| A. | Linear |
| B. | Tetrahedral |
| C. | Square planar |
| D. | Trigonal bipyramidal |
| Answer» E. | |
| 5244. |
The shape of \[{{\left[ Fe{{(CN)}_{6}} \right]}^{4-}}\] ion is |
| A. | Hexagonal |
| B. | Pyrimidal |
| C. | Octahedral |
| D. | Octagonal |
| Answer» D. Octagonal | |
| 5245. |
Which of the following complexes has a square planar geometry |
| A. | \[Ag\left( N{{H}_{3}} \right)_{2}^{+}\] |
| B. | \[Cu\left( en \right)_{2}^{2+}\] |
| C. | \[{{\left[ MnC{{l}_{4}} \right]}^{2-}}\] |
| D. | \[Ni{{\left( CO \right)}_{4}}\] |
| Answer» C. \[{{\left[ MnC{{l}_{4}} \right]}^{2-}}\] | |
| 5246. |
Which one is an example of octahedral complex [MP PET 2000] |
| A. | \[FeF_{6}^{3-}\] |
| B. | \[Zn(N{{H}_{3}})_{4}^{2+}\] |
| C. | \[Ni(CN)_{4}^{2-}\] |
| D. | \[Cu(N{{H}_{3}})_{4}^{2+}\] |
| Answer» B. \[Zn(N{{H}_{3}})_{4}^{2+}\] | |
| 5247. |
The correct structural formula of zeise's salt is |
| A. | \[{{K}^{+}}{{\left[ PtC{{l}_{3}}-{{\eta }^{2}}-({{C}_{2}}{{H}_{4}}) \right]}^{-}}\] |
| B. | \[{{K}_{2}}\left[ PtC{{l}_{3}}-{{\eta }^{2}}-{{C}_{2}}{{H}_{4}} \right]\] |
| C. | \[{{K}^{+}}\left[ PtC{{l}_{2}}-{{\eta }^{2}}-({{C}_{2}}{{H}_{4}}) \right]C{{l}^{-}}\] |
| D. | \[{{K}^{+}}{{\left[ PtC{{l}_{3}}({{C}_{2}}{{H}_{4}} \right]}^{-}}\] |
| Answer» B. \[{{K}_{2}}\left[ PtC{{l}_{3}}-{{\eta }^{2}}-{{C}_{2}}{{H}_{4}} \right]\] | |
| 5248. |
The values of heat of formation of \[S{{O}_{2}}\] and \[S{{O}_{3}}\] are \[-298.2\,kJ\] and \[-98.2\,kJ\]. The heat of reaction of the following reaction will be \[S{{O}_{2}}+\frac{1}{2}{{O}_{2}}\to S{{O}_{3}}\] [BHU 1997; CBSE PMT 2000] |
| A. | \[-200\,kJ\] |
| B. | \[-356.2\,kJ\] |
| C. | \[+200\,kJ\] |
| D. | \[-396.2\,kJ\] |
| Answer» D. \[-396.2\,kJ\] | |
| 5249. |
\[C+{{O}_{2}}\to C{{O}_{2}};\,\Delta H=X\] \[CO+\frac{1}{2}{{O}_{2}}\to C{{O}_{2}};\,\Delta H=Y\] Then the heat of formation of \[CO\] is [BHU 1997; DPMT 2002] |
| A. | \[X-Y\] |
| B. | \[Y-2X\] |
| C. | \[X+Y\] |
| D. | \[2X-Y\] |
| Answer» B. \[Y-2X\] | |
| 5250. |
In the complete combustion of butanol \[{{C}_{4}}{{H}_{9}}OH(l)\], if \[\Delta H\] is enthalpy of combustion and \[\Delta E\] is the heat of combustion at constant volume, then [EAMCET 1997] |
| A. | \[\Delta H<\Delta E\] |
| B. | \[\Delta H=\Delta E\] |
| C. | \[\Delta H>\Delta E\] |
| D. | \[\Delta H,\,\Delta E\] relation cannot be predicted |
| Answer» D. \[\Delta H,\,\Delta E\] relation cannot be predicted | |